Properties

Label 3391.3390
Modulus $3391$
Conductor $3391$
Order $2$
Real yes
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3391, base_ring=CyclotomicField(2)) M = H._module chi = DirichletCharacter(H, M([1]))
 
Copy content pari:[g,chi] = znchar(Mod(3390,3391))
 

Kronecker symbol representation

Copy content sage:kronecker_character(-3391)
 
Copy content pari:znchartokronecker(g,chi)
 

\(\displaystyle\left(\frac{-3391}{\bullet}\right)\)

Basic properties

Modulus: \(3391\)
Conductor: \(3391\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(2\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: yes
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 3391.b

\(\chi_{3391}(3390,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q\)
Fixed field: \(\Q(\sqrt{-3391}) \)

Values on generators

\(3\) → \(-1\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\( \chi_{ 3391 }(3390, a) \) \(-1\)\(1\)\(1\)\(-1\)\(1\)\(1\)\(-1\)\(1\)\(1\)\(1\)\(1\)\(-1\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 3391 }(3390,a) \;\) at \(\;a = \) e.g. 2