Properties

Label 3360.2629
Modulus $3360$
Conductor $1120$
Order $24$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3360, base_ring=CyclotomicField(24)) M = H._module chi = DirichletCharacter(H, M([0,3,0,12,16]))
 
Copy content pari:[g,chi] = znchar(Mod(2629,3360))
 

Basic properties

Modulus: \(3360\)
Conductor: \(1120\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(24\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1120}(389,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 3360.hk

\(\chi_{3360}(109,\cdot)\) \(\chi_{3360}(709,\cdot)\) \(\chi_{3360}(949,\cdot)\) \(\chi_{3360}(1549,\cdot)\) \(\chi_{3360}(1789,\cdot)\) \(\chi_{3360}(2389,\cdot)\) \(\chi_{3360}(2629,\cdot)\) \(\chi_{3360}(3229,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{24})\)
Fixed field: Number field defined by a degree 24 polynomial

Values on generators

\((1471,421,1121,2017,1921)\) → \((1,e\left(\frac{1}{8}\right),1,-1,e\left(\frac{2}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 3360 }(2629, a) \) \(1\)\(1\)\(e\left(\frac{7}{24}\right)\)\(e\left(\frac{3}{8}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{5}{24}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{3}{8}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{23}{24}\right)\)\(-i\)\(e\left(\frac{1}{8}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 3360 }(2629,a) \;\) at \(\;a = \) e.g. 2