sage: H = DirichletGroup(3360)
pari: g = idealstar(,3360,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 768 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{24}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{3360}(1471,\cdot)$, $\chi_{3360}(421,\cdot)$, $\chi_{3360}(1121,\cdot)$, $\chi_{3360}(2017,\cdot)$, $\chi_{3360}(1921,\cdot)$ |
First 32 of 768 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{3360}(1,\cdot)\) | 3360.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{3360}(11,\cdot)\) | 3360.hr | 24 | no | \(1\) | \(1\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{23}{24}\right)\) | \(i\) | \(e\left(\frac{5}{8}\right)\) |
\(\chi_{3360}(13,\cdot)\) | 3360.et | 8 | no | \(1\) | \(1\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(-i\) | \(e\left(\frac{1}{8}\right)\) | \(-1\) | \(e\left(\frac{1}{8}\right)\) | \(-1\) | \(e\left(\frac{5}{8}\right)\) | \(-i\) | \(e\left(\frac{5}{8}\right)\) |
\(\chi_{3360}(17,\cdot)\) | 3360.ft | 12 | no | \(-1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(-i\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(1\) | \(i\) |
\(\chi_{3360}(19,\cdot)\) | 3360.ij | 24 | no | \(1\) | \(1\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(-i\) | \(e\left(\frac{3}{8}\right)\) |
\(\chi_{3360}(23,\cdot)\) | 3360.gd | 12 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(-1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(i\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(-1\) |
\(\chi_{3360}(29,\cdot)\) | 3360.em | 8 | no | \(-1\) | \(1\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(-1\) | \(e\left(\frac{5}{8}\right)\) | \(i\) | \(e\left(\frac{5}{8}\right)\) | \(1\) | \(e\left(\frac{7}{8}\right)\) | \(-i\) | \(e\left(\frac{3}{8}\right)\) |
\(\chi_{3360}(31,\cdot)\) | 3360.dx | 6 | no | \(1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(-1\) |
\(\chi_{3360}(37,\cdot)\) | 3360.ic | 24 | no | \(-1\) | \(1\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(-i\) | \(e\left(\frac{3}{8}\right)\) |
\(\chi_{3360}(41,\cdot)\) | 3360.ck | 4 | no | \(1\) | \(1\) | \(i\) | \(-i\) | \(1\) | \(-i\) | \(1\) | \(-i\) | \(-1\) | \(-i\) | \(-1\) | \(-i\) |
\(\chi_{3360}(43,\cdot)\) | 3360.es | 8 | no | \(1\) | \(1\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(i\) | \(e\left(\frac{3}{8}\right)\) | \(-1\) | \(e\left(\frac{3}{8}\right)\) | \(-1\) | \(e\left(\frac{3}{8}\right)\) | \(-i\) | \(e\left(\frac{7}{8}\right)\) |
\(\chi_{3360}(47,\cdot)\) | 3360.hc | 12 | no | \(1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(-i\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(1\) | \(-i\) |
\(\chi_{3360}(53,\cdot)\) | 3360.ia | 24 | yes | \(1\) | \(1\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(i\) | \(e\left(\frac{3}{8}\right)\) |
\(\chi_{3360}(59,\cdot)\) | 3360.hn | 24 | yes | \(-1\) | \(1\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{23}{24}\right)\) | \(-i\) | \(e\left(\frac{5}{8}\right)\) |
\(\chi_{3360}(61,\cdot)\) | 3360.ho | 24 | no | \(-1\) | \(1\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(-i\) | \(e\left(\frac{7}{8}\right)\) |
\(\chi_{3360}(67,\cdot)\) | 3360.if | 24 | no | \(1\) | \(1\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{23}{24}\right)\) | \(i\) | \(e\left(\frac{1}{8}\right)\) |
\(\chi_{3360}(71,\cdot)\) | 3360.ca | 4 | no | \(1\) | \(1\) | \(i\) | \(-i\) | \(-1\) | \(i\) | \(-1\) | \(i\) | \(-1\) | \(i\) | \(1\) | \(-i\) |
\(\chi_{3360}(73,\cdot)\) | 3360.hb | 12 | no | \(1\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(1\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(-i\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(1\) | \(1\) |
\(\chi_{3360}(79,\cdot)\) | 3360.do | 6 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(-1\) |
\(\chi_{3360}(83,\cdot)\) | 3360.ew | 8 | yes | \(1\) | \(1\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(i\) | \(e\left(\frac{5}{8}\right)\) | \(-1\) | \(e\left(\frac{5}{8}\right)\) | \(1\) | \(e\left(\frac{5}{8}\right)\) | \(i\) | \(e\left(\frac{1}{8}\right)\) |
\(\chi_{3360}(89,\cdot)\) | 3360.gr | 12 | no | \(1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(-i\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(i\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(-1\) | \(-i\) |
\(\chi_{3360}(97,\cdot)\) | 3360.cz | 4 | no | \(1\) | \(1\) | \(1\) | \(i\) | \(-i\) | \(1\) | \(-i\) | \(-1\) | \(-1\) | \(i\) | \(-1\) | \(-i\) |
\(\chi_{3360}(101,\cdot)\) | 3360.io | 24 | no | \(1\) | \(1\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(-i\) | \(e\left(\frac{5}{8}\right)\) |
\(\chi_{3360}(103,\cdot)\) | 3360.fx | 12 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(-1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(i\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(1\) |
\(\chi_{3360}(107,\cdot)\) | 3360.ih | 24 | yes | \(-1\) | \(1\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(i\) | \(e\left(\frac{3}{8}\right)\) |
\(\chi_{3360}(109,\cdot)\) | 3360.hk | 24 | no | \(1\) | \(1\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(i\) | \(e\left(\frac{7}{8}\right)\) |
\(\chi_{3360}(113,\cdot)\) | 3360.da | 4 | no | \(1\) | \(1\) | \(1\) | \(-i\) | \(i\) | \(1\) | \(-i\) | \(-1\) | \(1\) | \(i\) | \(-1\) | \(-i\) |
\(\chi_{3360}(121,\cdot)\) | 3360.gi | 12 | no | \(1\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(-i\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-i\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(-1\) | \(i\) |
\(\chi_{3360}(127,\cdot)\) | 3360.bl | 4 | no | \(1\) | \(1\) | \(-1\) | \(-i\) | \(i\) | \(1\) | \(i\) | \(-1\) | \(-1\) | \(i\) | \(1\) | \(i\) |
\(\chi_{3360}(131,\cdot)\) | 3360.ii | 24 | no | \(-1\) | \(1\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(i\) | \(e\left(\frac{3}{8}\right)\) |
\(\chi_{3360}(137,\cdot)\) | 3360.gv | 12 | no | \(1\) | \(1\) | \(e\left(\frac{11}{12}\right)\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(i\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(-1\) |
\(\chi_{3360}(139,\cdot)\) | 3360.ep | 8 | no | \(1\) | \(1\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(-1\) | \(e\left(\frac{3}{8}\right)\) | \(-i\) | \(e\left(\frac{7}{8}\right)\) | \(1\) | \(e\left(\frac{1}{8}\right)\) | \(i\) | \(e\left(\frac{1}{8}\right)\) |