sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3360, base_ring=CyclotomicField(24))
M = H._module
chi = DirichletCharacter(H, M([0,15,12,12,4]))
pari:[g,chi] = znchar(Mod(1109,3360))
Modulus: | \(3360\) | |
Conductor: | \(3360\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(24\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{3360}(269,\cdot)\)
\(\chi_{3360}(509,\cdot)\)
\(\chi_{3360}(1109,\cdot)\)
\(\chi_{3360}(1349,\cdot)\)
\(\chi_{3360}(1949,\cdot)\)
\(\chi_{3360}(2189,\cdot)\)
\(\chi_{3360}(2789,\cdot)\)
\(\chi_{3360}(3029,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1471,421,1121,2017,1921)\) → \((1,e\left(\frac{5}{8}\right),-1,-1,e\left(\frac{1}{6}\right))\)
\(a\) |
\(-1\) | \(1\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
\( \chi_{ 3360 }(1109, a) \) |
\(1\) | \(1\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(-i\) | \(e\left(\frac{5}{8}\right)\) |
sage:chi.jacobi_sum(n)