L(s) = 1 | + (−0.258 + 0.965i)11-s + (−0.707 + 0.707i)13-s + (−0.5 − 0.866i)17-s + (0.258 + 0.965i)19-s + (0.866 + 0.5i)23-s + (−0.707 + 0.707i)29-s + (0.5 + 0.866i)31-s + (−0.965 + 0.258i)37-s − i·41-s + (−0.707 − 0.707i)43-s + (−0.5 + 0.866i)47-s + (0.258 − 0.965i)53-s + (−0.258 + 0.965i)59-s + (−0.258 − 0.965i)61-s + (0.965 + 0.258i)67-s + ⋯ |
L(s) = 1 | + (−0.258 + 0.965i)11-s + (−0.707 + 0.707i)13-s + (−0.5 − 0.866i)17-s + (0.258 + 0.965i)19-s + (0.866 + 0.5i)23-s + (−0.707 + 0.707i)29-s + (0.5 + 0.866i)31-s + (−0.965 + 0.258i)37-s − i·41-s + (−0.707 − 0.707i)43-s + (−0.5 + 0.866i)47-s + (0.258 − 0.965i)53-s + (−0.258 + 0.965i)59-s + (−0.258 − 0.965i)61-s + (0.965 + 0.258i)67-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3360 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.998 - 0.0612i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3360 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.998 - 0.0612i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.01120499602 + 0.3654611919i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.01120499602 + 0.3654611919i\) |
\(L(1)\) |
\(\approx\) |
\(0.8297585304 + 0.1504256093i\) |
\(L(1)\) |
\(\approx\) |
\(0.8297585304 + 0.1504256093i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
| 7 | \( 1 \) |
good | 11 | \( 1 + (-0.258 + 0.965i)T \) |
| 13 | \( 1 + (-0.707 + 0.707i)T \) |
| 17 | \( 1 + (-0.5 - 0.866i)T \) |
| 19 | \( 1 + (0.258 + 0.965i)T \) |
| 23 | \( 1 + (0.866 + 0.5i)T \) |
| 29 | \( 1 + (-0.707 + 0.707i)T \) |
| 31 | \( 1 + (0.5 + 0.866i)T \) |
| 37 | \( 1 + (-0.965 + 0.258i)T \) |
| 41 | \( 1 - iT \) |
| 43 | \( 1 + (-0.707 - 0.707i)T \) |
| 47 | \( 1 + (-0.5 + 0.866i)T \) |
| 53 | \( 1 + (0.258 - 0.965i)T \) |
| 59 | \( 1 + (-0.258 + 0.965i)T \) |
| 61 | \( 1 + (-0.258 - 0.965i)T \) |
| 67 | \( 1 + (0.965 + 0.258i)T \) |
| 71 | \( 1 - iT \) |
| 73 | \( 1 + (-0.866 + 0.5i)T \) |
| 79 | \( 1 + (0.5 - 0.866i)T \) |
| 83 | \( 1 + (0.707 - 0.707i)T \) |
| 89 | \( 1 + (-0.866 - 0.5i)T \) |
| 97 | \( 1 + T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.52057024332478573177103432031, −17.74151092073640456905175256886, −17.05625905291431906820330559678, −16.57158276340697223886683735278, −15.50357905737965220307487184705, −15.18081397605629277862542451793, −14.38685594228187768057743698929, −13.3247856320605007996355736112, −13.17874249059861642873022678397, −12.215151461678966486702006598427, −11.33360866852925535502136430956, −10.86592970994995935466949137232, −10.04428632690602027557711358636, −9.2934625646038117198767852647, −8.45470444588375229743611313917, −7.930879364206501746555326623657, −7.00255641255503098439225257188, −6.27776639610315488647757122542, −5.459069188119788612836308455920, −4.78894476280672549292913074791, −3.85669845578543386958511830012, −2.95861016019363127732026707230, −2.35554411799822725599574541843, −1.13470395873622205955412030559, −0.10917900329881189389616662732,
1.44020202562923726959665590776, 2.10649730475505649874010331008, 3.06630326282438080666329271579, 3.90202847911264010318941359632, 4.97422788331964260328992227073, 5.16365564661020876941247396937, 6.46846386534357360708987320379, 7.132723281166258943168587164779, 7.596698081340074782528367830275, 8.70489791542884813758560969695, 9.31885796471115918452951281524, 10.01373663127696237898682378098, 10.69272639207107710094206516825, 11.6521207426698356468695501977, 12.154387834546168072552278368910, 12.8591689507653118013091128519, 13.699030137065211193614876422139, 14.35044334045535665667086828779, 15.01360767091007315662021168211, 15.748065238356212840355609992698, 16.398285617994708710011779098, 17.21196088575168011446729673694, 17.724244554381031416311614674227, 18.550249171100289268273425526788, 19.11056779789293746334882553327