sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(31768, base_ring=CyclotomicField(114))
M = H._module
chi = DirichletCharacter(H, M([0,57,57,103]))
pari:[g,chi] = znchar(Mod(901,31768))
| Modulus: | \(31768\) | |
| Conductor: | \(31768\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(114\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{31768}(373,\cdot)\)
\(\chi_{31768}(901,\cdot)\)
\(\chi_{31768}(2045,\cdot)\)
\(\chi_{31768}(2573,\cdot)\)
\(\chi_{31768}(3717,\cdot)\)
\(\chi_{31768}(4245,\cdot)\)
\(\chi_{31768}(5389,\cdot)\)
\(\chi_{31768}(5917,\cdot)\)
\(\chi_{31768}(7061,\cdot)\)
\(\chi_{31768}(7589,\cdot)\)
\(\chi_{31768}(9261,\cdot)\)
\(\chi_{31768}(10405,\cdot)\)
\(\chi_{31768}(10933,\cdot)\)
\(\chi_{31768}(12077,\cdot)\)
\(\chi_{31768}(12605,\cdot)\)
\(\chi_{31768}(13749,\cdot)\)
\(\chi_{31768}(14277,\cdot)\)
\(\chi_{31768}(15421,\cdot)\)
\(\chi_{31768}(15949,\cdot)\)
\(\chi_{31768}(17093,\cdot)\)
\(\chi_{31768}(18765,\cdot)\)
\(\chi_{31768}(19293,\cdot)\)
\(\chi_{31768}(20437,\cdot)\)
\(\chi_{31768}(20965,\cdot)\)
\(\chi_{31768}(22109,\cdot)\)
\(\chi_{31768}(22637,\cdot)\)
\(\chi_{31768}(23781,\cdot)\)
\(\chi_{31768}(24309,\cdot)\)
\(\chi_{31768}(25453,\cdot)\)
\(\chi_{31768}(25981,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((7943,15885,5777,14081)\) → \((1,-1,-1,e\left(\frac{103}{114}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(13\) | \(15\) | \(17\) | \(21\) | \(23\) | \(25\) |
| \( \chi_{ 31768 }(901, a) \) |
\(1\) | \(1\) | \(e\left(\frac{5}{57}\right)\) | \(e\left(\frac{13}{114}\right)\) | \(e\left(\frac{1}{38}\right)\) | \(e\left(\frac{10}{57}\right)\) | \(e\left(\frac{29}{114}\right)\) | \(e\left(\frac{23}{114}\right)\) | \(e\left(\frac{79}{114}\right)\) | \(e\left(\frac{13}{114}\right)\) | \(e\left(\frac{52}{57}\right)\) | \(e\left(\frac{13}{57}\right)\) |
sage:chi.jacobi_sum(n)