Properties

Label 31768.18765
Modulus $31768$
Conductor $31768$
Order $114$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(31768, base_ring=CyclotomicField(114)) M = H._module chi = DirichletCharacter(H, M([0,57,57,107]))
 
Copy content pari:[g,chi] = znchar(Mod(18765,31768))
 

Basic properties

Modulus: \(31768\)
Conductor: \(31768\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(114\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 31768.eu

\(\chi_{31768}(373,\cdot)\) \(\chi_{31768}(901,\cdot)\) \(\chi_{31768}(2045,\cdot)\) \(\chi_{31768}(2573,\cdot)\) \(\chi_{31768}(3717,\cdot)\) \(\chi_{31768}(4245,\cdot)\) \(\chi_{31768}(5389,\cdot)\) \(\chi_{31768}(5917,\cdot)\) \(\chi_{31768}(7061,\cdot)\) \(\chi_{31768}(7589,\cdot)\) \(\chi_{31768}(9261,\cdot)\) \(\chi_{31768}(10405,\cdot)\) \(\chi_{31768}(10933,\cdot)\) \(\chi_{31768}(12077,\cdot)\) \(\chi_{31768}(12605,\cdot)\) \(\chi_{31768}(13749,\cdot)\) \(\chi_{31768}(14277,\cdot)\) \(\chi_{31768}(15421,\cdot)\) \(\chi_{31768}(15949,\cdot)\) \(\chi_{31768}(17093,\cdot)\) \(\chi_{31768}(18765,\cdot)\) \(\chi_{31768}(19293,\cdot)\) \(\chi_{31768}(20437,\cdot)\) \(\chi_{31768}(20965,\cdot)\) \(\chi_{31768}(22109,\cdot)\) \(\chi_{31768}(22637,\cdot)\) \(\chi_{31768}(23781,\cdot)\) \(\chi_{31768}(24309,\cdot)\) \(\chi_{31768}(25453,\cdot)\) \(\chi_{31768}(25981,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{57})$
Fixed field: Number field defined by a degree 114 polynomial (not computed)

Values on generators

\((7943,15885,5777,14081)\) → \((1,-1,-1,e\left(\frac{107}{114}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(13\)\(15\)\(17\)\(21\)\(23\)\(25\)
\( \chi_{ 31768 }(18765, a) \) \(1\)\(1\)\(e\left(\frac{55}{57}\right)\)\(e\left(\frac{29}{114}\right)\)\(e\left(\frac{11}{38}\right)\)\(e\left(\frac{53}{57}\right)\)\(e\left(\frac{91}{114}\right)\)\(e\left(\frac{25}{114}\right)\)\(e\left(\frac{71}{114}\right)\)\(e\left(\frac{29}{114}\right)\)\(e\left(\frac{2}{57}\right)\)\(e\left(\frac{29}{57}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 31768 }(18765,a) \;\) at \(\;a = \) e.g. 2