Properties

Label 3150.701
Modulus $3150$
Conductor $3$
Order $2$
Real yes
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3150, base_ring=CyclotomicField(2)) M = H._module chi = DirichletCharacter(H, M([1,0,0]))
 
Copy content pari:[g,chi] = znchar(Mod(701,3150))
 

Basic properties

Modulus: \(3150\)
Conductor: \(3\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(2\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: yes
Primitive: no, induced from \(\chi_{3}(2,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 3150.e

\(\chi_{3150}(701,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q\)
Fixed field: \(\Q(\sqrt{-3}) \)

Values on generators

\((2801,127,451)\) → \((-1,1,1)\)

First values

\(a\) \(-1\)\(1\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 3150 }(701, a) \) \(-1\)\(1\)\(-1\)\(1\)\(-1\)\(1\)\(-1\)\(-1\)\(1\)\(1\)\(-1\)\(1\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 3150 }(701,a) \;\) at \(\;a = \) e.g. 2