sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(31360, base_ring=CyclotomicField(224))
M = H._module
chi = DirichletCharacter(H, M([112,21,168,144]))
pari:[g,chi] = znchar(Mod(643,31360))
| Modulus: | \(31360\) | |
| Conductor: | \(31360\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(224\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{31360}(27,\cdot)\)
\(\chi_{31360}(83,\cdot)\)
\(\chi_{31360}(643,\cdot)\)
\(\chi_{31360}(1147,\cdot)\)
\(\chi_{31360}(1203,\cdot)\)
\(\chi_{31360}(1707,\cdot)\)
\(\chi_{31360}(2267,\cdot)\)
\(\chi_{31360}(2323,\cdot)\)
\(\chi_{31360}(2827,\cdot)\)
\(\chi_{31360}(2883,\cdot)\)
\(\chi_{31360}(3387,\cdot)\)
\(\chi_{31360}(3443,\cdot)\)
\(\chi_{31360}(3947,\cdot)\)
\(\chi_{31360}(4003,\cdot)\)
\(\chi_{31360}(4563,\cdot)\)
\(\chi_{31360}(5067,\cdot)\)
\(\chi_{31360}(5123,\cdot)\)
\(\chi_{31360}(5627,\cdot)\)
\(\chi_{31360}(6187,\cdot)\)
\(\chi_{31360}(6243,\cdot)\)
\(\chi_{31360}(6747,\cdot)\)
\(\chi_{31360}(6803,\cdot)\)
\(\chi_{31360}(7307,\cdot)\)
\(\chi_{31360}(7363,\cdot)\)
\(\chi_{31360}(7867,\cdot)\)
\(\chi_{31360}(7923,\cdot)\)
\(\chi_{31360}(8483,\cdot)\)
\(\chi_{31360}(8987,\cdot)\)
\(\chi_{31360}(9043,\cdot)\)
\(\chi_{31360}(9547,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((17151,28421,18817,10881)\) → \((-1,e\left(\frac{3}{32}\right),-i,e\left(\frac{9}{14}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(27\) | \(29\) | \(31\) |
| \( \chi_{ 31360 }(643, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{151}{224}\right)\) | \(e\left(\frac{39}{112}\right)\) | \(e\left(\frac{41}{224}\right)\) | \(e\left(\frac{195}{224}\right)\) | \(e\left(\frac{25}{56}\right)\) | \(e\left(\frac{21}{32}\right)\) | \(e\left(\frac{55}{112}\right)\) | \(e\left(\frac{5}{224}\right)\) | \(e\left(\frac{135}{224}\right)\) | \(-i\) |
sage:chi.jacobi_sum(n)