Properties

Label 31360.27
Modulus $31360$
Conductor $31360$
Order $224$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(31360, base_ring=CyclotomicField(224)) M = H._module chi = DirichletCharacter(H, M([112,63,56,16]))
 
Copy content pari:[g,chi] = znchar(Mod(27,31360))
 

Basic properties

Modulus: \(31360\)
Conductor: \(31360\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(224\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 31360.lu

\(\chi_{31360}(27,\cdot)\) \(\chi_{31360}(83,\cdot)\) \(\chi_{31360}(643,\cdot)\) \(\chi_{31360}(1147,\cdot)\) \(\chi_{31360}(1203,\cdot)\) \(\chi_{31360}(1707,\cdot)\) \(\chi_{31360}(2267,\cdot)\) \(\chi_{31360}(2323,\cdot)\) \(\chi_{31360}(2827,\cdot)\) \(\chi_{31360}(2883,\cdot)\) \(\chi_{31360}(3387,\cdot)\) \(\chi_{31360}(3443,\cdot)\) \(\chi_{31360}(3947,\cdot)\) \(\chi_{31360}(4003,\cdot)\) \(\chi_{31360}(4563,\cdot)\) \(\chi_{31360}(5067,\cdot)\) \(\chi_{31360}(5123,\cdot)\) \(\chi_{31360}(5627,\cdot)\) \(\chi_{31360}(6187,\cdot)\) \(\chi_{31360}(6243,\cdot)\) \(\chi_{31360}(6747,\cdot)\) \(\chi_{31360}(6803,\cdot)\) \(\chi_{31360}(7307,\cdot)\) \(\chi_{31360}(7363,\cdot)\) \(\chi_{31360}(7867,\cdot)\) \(\chi_{31360}(7923,\cdot)\) \(\chi_{31360}(8483,\cdot)\) \(\chi_{31360}(8987,\cdot)\) \(\chi_{31360}(9043,\cdot)\) \(\chi_{31360}(9547,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{224})$
Fixed field: Number field defined by a degree 224 polynomial (not computed)

Values on generators

\((17151,28421,18817,10881)\) → \((-1,e\left(\frac{9}{32}\right),i,e\left(\frac{1}{14}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(9\)\(11\)\(13\)\(17\)\(19\)\(23\)\(27\)\(29\)\(31\)
\( \chi_{ 31360 }(27, a) \) \(-1\)\(1\)\(e\left(\frac{37}{224}\right)\)\(e\left(\frac{37}{112}\right)\)\(e\left(\frac{59}{224}\right)\)\(e\left(\frac{73}{224}\right)\)\(e\left(\frac{51}{56}\right)\)\(e\left(\frac{31}{32}\right)\)\(e\left(\frac{101}{112}\right)\)\(e\left(\frac{111}{224}\right)\)\(e\left(\frac{85}{224}\right)\)\(i\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 31360 }(27,a) \;\) at \(\;a = \) e.g. 2