sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(31360, base_ring=CyclotomicField(4))
M = H._module
chi = DirichletCharacter(H, M([0,0,1,0]))
pari:[g,chi] = znchar(Mod(18817,31360))
\(\chi_{31360}(6273,\cdot)\)
\(\chi_{31360}(18817,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((17151,28421,18817,10881)\) → \((1,1,i,1)\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(27\) | \(29\) | \(31\) |
| \( \chi_{ 31360 }(18817, a) \) |
\(-1\) | \(1\) | \(-i\) | \(-1\) | \(1\) | \(-i\) | \(i\) | \(-1\) | \(-i\) | \(i\) | \(-1\) | \(1\) |
sage:chi.jacobi_sum(n)