Properties

Label 309680.buo
Modulus $309680$
Conductor $30968$
Order $182$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(309680, base_ring=CyclotomicField(182)) M = H._module chi = DirichletCharacter(H, M([91,91,0,104,119])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(71,309680)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(309680\)
Conductor: \(30968\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(182\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 30968.jj
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{91})$
Fixed field: Number field defined by a degree 182 polynomial (not computed)

First 31 of 72 characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(9\) \(11\) \(13\) \(17\) \(19\) \(23\) \(27\) \(29\) \(31\)
\(\chi_{309680}(71,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{182}\right)\) \(e\left(\frac{41}{91}\right)\) \(e\left(\frac{29}{91}\right)\) \(e\left(\frac{107}{182}\right)\) \(e\left(\frac{3}{182}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{123}{182}\right)\) \(e\left(\frac{89}{91}\right)\) \(e\left(\frac{3}{26}\right)\)
\(\chi_{309680}(2871,\cdot)\) \(1\) \(1\) \(e\left(\frac{85}{182}\right)\) \(e\left(\frac{85}{91}\right)\) \(e\left(\frac{69}{91}\right)\) \(e\left(\frac{173}{182}\right)\) \(e\left(\frac{95}{182}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{73}{182}\right)\) \(e\left(\frac{58}{91}\right)\) \(e\left(\frac{17}{26}\right)\)
\(\chi_{309680}(3991,\cdot)\) \(1\) \(1\) \(e\left(\frac{97}{182}\right)\) \(e\left(\frac{6}{91}\right)\) \(e\left(\frac{22}{91}\right)\) \(e\left(\frac{9}{182}\right)\) \(e\left(\frac{87}{182}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{109}{182}\right)\) \(e\left(\frac{33}{91}\right)\) \(e\left(\frac{9}{26}\right)\)
\(\chi_{309680}(6231,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{182}\right)\) \(e\left(\frac{37}{91}\right)\) \(e\left(\frac{75}{91}\right)\) \(e\left(\frac{101}{182}\right)\) \(e\left(\frac{127}{182}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{111}{182}\right)\) \(e\left(\frac{67}{91}\right)\) \(e\left(\frac{23}{26}\right)\)
\(\chi_{309680}(17991,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{182}\right)\) \(e\left(\frac{9}{91}\right)\) \(e\left(\frac{33}{91}\right)\) \(e\left(\frac{59}{182}\right)\) \(e\left(\frac{85}{182}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{27}{182}\right)\) \(e\left(\frac{4}{91}\right)\) \(e\left(\frac{7}{26}\right)\)
\(\chi_{309680}(20791,\cdot)\) \(1\) \(1\) \(e\left(\frac{81}{182}\right)\) \(e\left(\frac{81}{91}\right)\) \(e\left(\frac{24}{91}\right)\) \(e\left(\frac{167}{182}\right)\) \(e\left(\frac{37}{182}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{61}{182}\right)\) \(e\left(\frac{36}{91}\right)\) \(e\left(\frac{11}{26}\right)\)
\(\chi_{309680}(28631,\cdot)\) \(1\) \(1\) \(e\left(\frac{109}{182}\right)\) \(e\left(\frac{18}{91}\right)\) \(e\left(\frac{66}{91}\right)\) \(e\left(\frac{27}{182}\right)\) \(e\left(\frac{79}{182}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{145}{182}\right)\) \(e\left(\frac{8}{91}\right)\) \(e\left(\frac{1}{26}\right)\)
\(\chi_{309680}(33671,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{182}\right)\) \(e\left(\frac{23}{91}\right)\) \(e\left(\frac{54}{91}\right)\) \(e\left(\frac{171}{182}\right)\) \(e\left(\frac{15}{182}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{69}{182}\right)\) \(e\left(\frac{81}{91}\right)\) \(e\left(\frac{15}{26}\right)\)
\(\chi_{309680}(39831,\cdot)\) \(1\) \(1\) \(e\left(\frac{173}{182}\right)\) \(e\left(\frac{82}{91}\right)\) \(e\left(\frac{58}{91}\right)\) \(e\left(\frac{123}{182}\right)\) \(e\left(\frac{97}{182}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{155}{182}\right)\) \(e\left(\frac{87}{91}\right)\) \(e\left(\frac{19}{26}\right)\)
\(\chi_{309680}(43191,\cdot)\) \(1\) \(1\) \(e\left(\frac{181}{182}\right)\) \(e\left(\frac{90}{91}\right)\) \(e\left(\frac{57}{91}\right)\) \(e\left(\frac{135}{182}\right)\) \(e\left(\frac{31}{182}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{179}{182}\right)\) \(e\left(\frac{40}{91}\right)\) \(e\left(\frac{5}{26}\right)\)
\(\chi_{309680}(44311,\cdot)\) \(1\) \(1\) \(e\left(\frac{67}{182}\right)\) \(e\left(\frac{67}{91}\right)\) \(e\left(\frac{3}{91}\right)\) \(e\left(\frac{55}{182}\right)\) \(e\left(\frac{107}{182}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{19}{182}\right)\) \(e\left(\frac{50}{91}\right)\) \(e\left(\frac{3}{26}\right)\)
\(\chi_{309680}(47111,\cdot)\) \(1\) \(1\) \(e\left(\frac{111}{182}\right)\) \(e\left(\frac{20}{91}\right)\) \(e\left(\frac{43}{91}\right)\) \(e\left(\frac{121}{182}\right)\) \(e\left(\frac{17}{182}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{151}{182}\right)\) \(e\left(\frac{19}{91}\right)\) \(e\left(\frac{17}{26}\right)\)
\(\chi_{309680}(48231,\cdot)\) \(1\) \(1\) \(e\left(\frac{123}{182}\right)\) \(e\left(\frac{32}{91}\right)\) \(e\left(\frac{87}{91}\right)\) \(e\left(\frac{139}{182}\right)\) \(e\left(\frac{9}{182}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{5}{182}\right)\) \(e\left(\frac{85}{91}\right)\) \(e\left(\frac{9}{26}\right)\)
\(\chi_{309680}(65031,\cdot)\) \(1\) \(1\) \(e\left(\frac{107}{182}\right)\) \(e\left(\frac{16}{91}\right)\) \(e\left(\frac{89}{91}\right)\) \(e\left(\frac{115}{182}\right)\) \(e\left(\frac{141}{182}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{139}{182}\right)\) \(e\left(\frac{88}{91}\right)\) \(e\left(\frac{11}{26}\right)\)
\(\chi_{309680}(71191,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{182}\right)\) \(e\left(\frac{47}{91}\right)\) \(e\left(\frac{51}{91}\right)\) \(e\left(\frac{25}{182}\right)\) \(e\left(\frac{181}{182}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{141}{182}\right)\) \(e\left(\frac{31}{91}\right)\) \(e\left(\frac{25}{26}\right)\)
\(\chi_{309680}(72871,\cdot)\) \(1\) \(1\) \(e\left(\frac{135}{182}\right)\) \(e\left(\frac{44}{91}\right)\) \(e\left(\frac{40}{91}\right)\) \(e\left(\frac{157}{182}\right)\) \(e\left(\frac{1}{182}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{41}{182}\right)\) \(e\left(\frac{60}{91}\right)\) \(e\left(\frac{1}{26}\right)\)
\(\chi_{309680}(75111,\cdot)\) \(1\) \(1\) \(e\left(\frac{131}{182}\right)\) \(e\left(\frac{40}{91}\right)\) \(e\left(\frac{86}{91}\right)\) \(e\left(\frac{151}{182}\right)\) \(e\left(\frac{125}{182}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{29}{182}\right)\) \(e\left(\frac{38}{91}\right)\) \(e\left(\frac{21}{26}\right)\)
\(\chi_{309680}(84071,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{182}\right)\) \(e\left(\frac{17}{91}\right)\) \(e\left(\frac{32}{91}\right)\) \(e\left(\frac{71}{182}\right)\) \(e\left(\frac{19}{182}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{51}{182}\right)\) \(e\left(\frac{48}{91}\right)\) \(e\left(\frac{19}{26}\right)\)
\(\chi_{309680}(87431,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{182}\right)\) \(e\left(\frac{25}{91}\right)\) \(e\left(\frac{31}{91}\right)\) \(e\left(\frac{83}{182}\right)\) \(e\left(\frac{135}{182}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{75}{182}\right)\) \(e\left(\frac{1}{91}\right)\) \(e\left(\frac{5}{26}\right)\)
\(\chi_{309680}(88551,\cdot)\) \(1\) \(1\) \(e\left(\frac{93}{182}\right)\) \(e\left(\frac{2}{91}\right)\) \(e\left(\frac{68}{91}\right)\) \(e\left(\frac{3}{182}\right)\) \(e\left(\frac{29}{182}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{97}{182}\right)\) \(e\left(\frac{11}{91}\right)\) \(e\left(\frac{3}{26}\right)\)
\(\chi_{309680}(91351,\cdot)\) \(1\) \(1\) \(e\left(\frac{137}{182}\right)\) \(e\left(\frac{46}{91}\right)\) \(e\left(\frac{17}{91}\right)\) \(e\left(\frac{69}{182}\right)\) \(e\left(\frac{121}{182}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{47}{182}\right)\) \(e\left(\frac{71}{91}\right)\) \(e\left(\frac{17}{26}\right)\)
\(\chi_{309680}(92471,\cdot)\) \(1\) \(1\) \(e\left(\frac{149}{182}\right)\) \(e\left(\frac{58}{91}\right)\) \(e\left(\frac{61}{91}\right)\) \(e\left(\frac{87}{182}\right)\) \(e\left(\frac{113}{182}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{83}{182}\right)\) \(e\left(\frac{46}{91}\right)\) \(e\left(\frac{9}{26}\right)\)
\(\chi_{309680}(94711,\cdot)\) \(1\) \(1\) \(e\left(\frac{89}{182}\right)\) \(e\left(\frac{89}{91}\right)\) \(e\left(\frac{23}{91}\right)\) \(e\left(\frac{179}{182}\right)\) \(e\left(\frac{153}{182}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{85}{182}\right)\) \(e\left(\frac{80}{91}\right)\) \(e\left(\frac{23}{26}\right)\)
\(\chi_{309680}(106471,\cdot)\) \(1\) \(1\) \(e\left(\frac{61}{182}\right)\) \(e\left(\frac{61}{91}\right)\) \(e\left(\frac{72}{91}\right)\) \(e\left(\frac{137}{182}\right)\) \(e\left(\frac{111}{182}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{1}{182}\right)\) \(e\left(\frac{17}{91}\right)\) \(e\left(\frac{7}{26}\right)\)
\(\chi_{309680}(115431,\cdot)\) \(1\) \(1\) \(e\left(\frac{73}{182}\right)\) \(e\left(\frac{73}{91}\right)\) \(e\left(\frac{25}{91}\right)\) \(e\left(\frac{155}{182}\right)\) \(e\left(\frac{103}{182}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{37}{182}\right)\) \(e\left(\frac{83}{91}\right)\) \(e\left(\frac{25}{26}\right)\)
\(\chi_{309680}(119351,\cdot)\) \(1\) \(1\) \(e\left(\frac{157}{182}\right)\) \(e\left(\frac{66}{91}\right)\) \(e\left(\frac{60}{91}\right)\) \(e\left(\frac{99}{182}\right)\) \(e\left(\frac{47}{182}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{107}{182}\right)\) \(e\left(\frac{90}{91}\right)\) \(e\left(\frac{21}{26}\right)\)
\(\chi_{309680}(122151,\cdot)\) \(1\) \(1\) \(e\left(\frac{75}{182}\right)\) \(e\left(\frac{75}{91}\right)\) \(e\left(\frac{2}{91}\right)\) \(e\left(\frac{67}{182}\right)\) \(e\left(\frac{41}{182}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{43}{182}\right)\) \(e\left(\frac{3}{91}\right)\) \(e\left(\frac{15}{26}\right)\)
\(\chi_{309680}(128311,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{182}\right)\) \(e\left(\frac{43}{91}\right)\) \(e\left(\frac{6}{91}\right)\) \(e\left(\frac{19}{182}\right)\) \(e\left(\frac{123}{182}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{129}{182}\right)\) \(e\left(\frac{9}{91}\right)\) \(e\left(\frac{19}{26}\right)\)
\(\chi_{309680}(131671,\cdot)\) \(1\) \(1\) \(e\left(\frac{51}{182}\right)\) \(e\left(\frac{51}{91}\right)\) \(e\left(\frac{5}{91}\right)\) \(e\left(\frac{31}{182}\right)\) \(e\left(\frac{57}{182}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{153}{182}\right)\) \(e\left(\frac{53}{91}\right)\) \(e\left(\frac{5}{26}\right)\)
\(\chi_{309680}(135591,\cdot)\) \(1\) \(1\) \(e\left(\frac{163}{182}\right)\) \(e\left(\frac{72}{91}\right)\) \(e\left(\frac{82}{91}\right)\) \(e\left(\frac{17}{182}\right)\) \(e\left(\frac{43}{182}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{125}{182}\right)\) \(e\left(\frac{32}{91}\right)\) \(e\left(\frac{17}{26}\right)\)
\(\chi_{309680}(138951,\cdot)\) \(1\) \(1\) \(e\left(\frac{115}{182}\right)\) \(e\left(\frac{24}{91}\right)\) \(e\left(\frac{88}{91}\right)\) \(e\left(\frac{127}{182}\right)\) \(e\left(\frac{75}{182}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{163}{182}\right)\) \(e\left(\frac{41}{91}\right)\) \(e\left(\frac{23}{26}\right)\)