Properties

Label 309680.84071
Modulus $309680$
Conductor $30968$
Order $182$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(309680, base_ring=CyclotomicField(182)) M = H._module chi = DirichletCharacter(H, M([91,91,0,52,147]))
 
Copy content pari:[g,chi] = znchar(Mod(84071,309680))
 

Basic properties

Modulus: \(309680\)
Conductor: \(30968\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(182\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{30968}(6651,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 309680.buo

\(\chi_{309680}(71,\cdot)\) \(\chi_{309680}(2871,\cdot)\) \(\chi_{309680}(3991,\cdot)\) \(\chi_{309680}(6231,\cdot)\) \(\chi_{309680}(17991,\cdot)\) \(\chi_{309680}(20791,\cdot)\) \(\chi_{309680}(28631,\cdot)\) \(\chi_{309680}(33671,\cdot)\) \(\chi_{309680}(39831,\cdot)\) \(\chi_{309680}(43191,\cdot)\) \(\chi_{309680}(44311,\cdot)\) \(\chi_{309680}(47111,\cdot)\) \(\chi_{309680}(48231,\cdot)\) \(\chi_{309680}(65031,\cdot)\) \(\chi_{309680}(71191,\cdot)\) \(\chi_{309680}(72871,\cdot)\) \(\chi_{309680}(75111,\cdot)\) \(\chi_{309680}(84071,\cdot)\) \(\chi_{309680}(87431,\cdot)\) \(\chi_{309680}(88551,\cdot)\) \(\chi_{309680}(91351,\cdot)\) \(\chi_{309680}(92471,\cdot)\) \(\chi_{309680}(94711,\cdot)\) \(\chi_{309680}(106471,\cdot)\) \(\chi_{309680}(115431,\cdot)\) \(\chi_{309680}(119351,\cdot)\) \(\chi_{309680}(122151,\cdot)\) \(\chi_{309680}(128311,\cdot)\) \(\chi_{309680}(131671,\cdot)\) \(\chi_{309680}(135591,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{91})$
Fixed field: Number field defined by a degree 182 polynomial (not computed)

Values on generators

\((193551,232261,61937,297041,82321)\) → \((-1,-1,1,e\left(\frac{2}{7}\right),e\left(\frac{21}{26}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(9\)\(11\)\(13\)\(17\)\(19\)\(23\)\(27\)\(29\)\(31\)
\( \chi_{ 309680 }(84071, a) \) \(1\)\(1\)\(e\left(\frac{17}{182}\right)\)\(e\left(\frac{17}{91}\right)\)\(e\left(\frac{32}{91}\right)\)\(e\left(\frac{71}{182}\right)\)\(e\left(\frac{19}{182}\right)\)\(e\left(\frac{11}{13}\right)\)\(e\left(\frac{5}{14}\right)\)\(e\left(\frac{51}{182}\right)\)\(e\left(\frac{48}{91}\right)\)\(e\left(\frac{19}{26}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 309680 }(84071,a) \;\) at \(\;a = \) e.g. 2