sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(309680, base_ring=CyclotomicField(2))
M = H._module
chi = DirichletCharacter(H, M([0,0,0,0,0]))
         
     
    
    
        
        pari:[g,chi] = znchar(Mod(1,309680))
         
     
    
  \(\chi_{309680}(1,\cdot)\)
    
        
        sage:chi.galois_orbit()
         
     
    
    
        
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((193551,232261,61937,297041,82321)\) → \((1,1,1,1,1)\)
  
    
      
        | \(a\) | 
        \(-1\) | \(1\) | \(3\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(27\) | \(29\) | \(31\) |       
    
    
      | \( \chi_{ 309680 }(1, a) \) | 
      \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |     
  
 
    
        
        sage:chi.jacobi_sum(n)