sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(309680, base_ring=CyclotomicField(4))
M = H._module
chi = DirichletCharacter(H, M([0,0,1,0,0]))
pari:[g,chi] = znchar(Mod(61937,309680))
\(\chi_{309680}(61937,\cdot)\)
\(\chi_{309680}(123873,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((193551,232261,61937,297041,82321)\) → \((1,1,i,1,1)\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(27\) | \(29\) | \(31\) |
| \( \chi_{ 309680 }(61937, a) \) |
\(-1\) | \(1\) | \(-i\) | \(-1\) | \(1\) | \(-i\) | \(i\) | \(-1\) | \(-i\) | \(i\) | \(-1\) | \(1\) |
sage:chi.jacobi_sum(n)