sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3042, base_ring=CyclotomicField(78))
M = H._module
chi = DirichletCharacter(H, M([26,53]))
pari:[g,chi] = znchar(Mod(2623,3042))
\(\chi_{3042}(43,\cdot)\)
\(\chi_{3042}(49,\cdot)\)
\(\chi_{3042}(277,\cdot)\)
\(\chi_{3042}(283,\cdot)\)
\(\chi_{3042}(511,\cdot)\)
\(\chi_{3042}(517,\cdot)\)
\(\chi_{3042}(745,\cdot)\)
\(\chi_{3042}(751,\cdot)\)
\(\chi_{3042}(979,\cdot)\)
\(\chi_{3042}(985,\cdot)\)
\(\chi_{3042}(1213,\cdot)\)
\(\chi_{3042}(1219,\cdot)\)
\(\chi_{3042}(1447,\cdot)\)
\(\chi_{3042}(1453,\cdot)\)
\(\chi_{3042}(1681,\cdot)\)
\(\chi_{3042}(1687,\cdot)\)
\(\chi_{3042}(1915,\cdot)\)
\(\chi_{3042}(1921,\cdot)\)
\(\chi_{3042}(2149,\cdot)\)
\(\chi_{3042}(2155,\cdot)\)
\(\chi_{3042}(2383,\cdot)\)
\(\chi_{3042}(2617,\cdot)\)
\(\chi_{3042}(2623,\cdot)\)
\(\chi_{3042}(2857,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((677,847)\) → \((e\left(\frac{1}{3}\right),e\left(\frac{53}{78}\right))\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
\( \chi_{ 3042 }(2623, a) \) |
\(1\) | \(1\) | \(e\left(\frac{61}{78}\right)\) | \(e\left(\frac{1}{26}\right)\) | \(e\left(\frac{25}{78}\right)\) | \(e\left(\frac{8}{39}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(e\left(\frac{22}{39}\right)\) | \(e\left(\frac{20}{39}\right)\) | \(e\left(\frac{73}{78}\right)\) | \(e\left(\frac{32}{39}\right)\) |
sage:chi.jacobi_sum(n)