Properties

Label 3042.bu
Modulus $3042$
Conductor $1521$
Order $78$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3042, base_ring=CyclotomicField(78)) M = H._module chi = DirichletCharacter(H, M([52,61])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(43,3042)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(3042\)
Conductor: \(1521\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(78\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 1521.bs
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{39})$
Fixed field: Number field defined by a degree 78 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(7\) \(11\) \(17\) \(19\) \(23\) \(25\) \(29\) \(31\) \(35\)
\(\chi_{3042}(43,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{78}\right)\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{17}{78}\right)\) \(e\left(\frac{7}{39}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{29}{39}\right)\) \(e\left(\frac{37}{39}\right)\) \(e\left(\frac{59}{78}\right)\) \(e\left(\frac{28}{39}\right)\)
\(\chi_{3042}(49,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{78}\right)\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{49}{78}\right)\) \(e\left(\frac{11}{39}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{1}{39}\right)\) \(e\left(\frac{8}{39}\right)\) \(e\left(\frac{37}{78}\right)\) \(e\left(\frac{5}{39}\right)\)
\(\chi_{3042}(277,\cdot)\) \(1\) \(1\) \(e\left(\frac{71}{78}\right)\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{47}{78}\right)\) \(e\left(\frac{1}{39}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{32}{39}\right)\) \(e\left(\frac{22}{39}\right)\) \(e\left(\frac{53}{78}\right)\) \(e\left(\frac{4}{39}\right)\)
\(\chi_{3042}(283,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{78}\right)\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{61}{78}\right)\) \(e\left(\frac{32}{39}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{10}{39}\right)\) \(e\left(\frac{2}{39}\right)\) \(e\left(\frac{19}{78}\right)\) \(e\left(\frac{11}{39}\right)\)
\(\chi_{3042}(511,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{78}\right)\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{77}{78}\right)\) \(e\left(\frac{34}{39}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{35}{39}\right)\) \(e\left(\frac{7}{39}\right)\) \(e\left(\frac{47}{78}\right)\) \(e\left(\frac{19}{39}\right)\)
\(\chi_{3042}(517,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{78}\right)\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{73}{78}\right)\) \(e\left(\frac{14}{39}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{19}{39}\right)\) \(e\left(\frac{35}{39}\right)\) \(e\left(\frac{1}{78}\right)\) \(e\left(\frac{17}{39}\right)\)
\(\chi_{3042}(745,\cdot)\) \(1\) \(1\) \(e\left(\frac{77}{78}\right)\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{29}{78}\right)\) \(e\left(\frac{28}{39}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{38}{39}\right)\) \(e\left(\frac{31}{39}\right)\) \(e\left(\frac{41}{78}\right)\) \(e\left(\frac{34}{39}\right)\)
\(\chi_{3042}(751,\cdot)\) \(1\) \(1\) \(e\left(\frac{67}{78}\right)\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{7}{78}\right)\) \(e\left(\frac{35}{39}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{28}{39}\right)\) \(e\left(\frac{29}{39}\right)\) \(e\left(\frac{61}{78}\right)\) \(e\left(\frac{23}{39}\right)\)
\(\chi_{3042}(979,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{78}\right)\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{59}{78}\right)\) \(e\left(\frac{22}{39}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{2}{39}\right)\) \(e\left(\frac{16}{39}\right)\) \(e\left(\frac{35}{78}\right)\) \(e\left(\frac{10}{39}\right)\)
\(\chi_{3042}(985,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{78}\right)\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{19}{78}\right)\) \(e\left(\frac{17}{39}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{37}{39}\right)\) \(e\left(\frac{23}{39}\right)\) \(e\left(\frac{43}{78}\right)\) \(e\left(\frac{29}{39}\right)\)
\(\chi_{3042}(1213,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{78}\right)\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{11}{78}\right)\) \(e\left(\frac{16}{39}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{5}{39}\right)\) \(e\left(\frac{1}{39}\right)\) \(e\left(\frac{29}{78}\right)\) \(e\left(\frac{25}{39}\right)\)
\(\chi_{3042}(1219,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{78}\right)\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{31}{78}\right)\) \(e\left(\frac{38}{39}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{7}{39}\right)\) \(e\left(\frac{17}{39}\right)\) \(e\left(\frac{25}{78}\right)\) \(e\left(\frac{35}{39}\right)\)
\(\chi_{3042}(1447,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{78}\right)\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{41}{78}\right)\) \(e\left(\frac{10}{39}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{8}{39}\right)\) \(e\left(\frac{25}{39}\right)\) \(e\left(\frac{23}{78}\right)\) \(e\left(\frac{1}{39}\right)\)
\(\chi_{3042}(1453,\cdot)\) \(1\) \(1\) \(e\left(\frac{55}{78}\right)\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{43}{78}\right)\) \(e\left(\frac{20}{39}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{16}{39}\right)\) \(e\left(\frac{11}{39}\right)\) \(e\left(\frac{7}{78}\right)\) \(e\left(\frac{2}{39}\right)\)
\(\chi_{3042}(1681,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{78}\right)\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{71}{78}\right)\) \(e\left(\frac{4}{39}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{11}{39}\right)\) \(e\left(\frac{10}{39}\right)\) \(e\left(\frac{17}{78}\right)\) \(e\left(\frac{16}{39}\right)\)
\(\chi_{3042}(1687,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{78}\right)\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{55}{78}\right)\) \(e\left(\frac{2}{39}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{25}{39}\right)\) \(e\left(\frac{5}{39}\right)\) \(e\left(\frac{67}{78}\right)\) \(e\left(\frac{8}{39}\right)\)
\(\chi_{3042}(1915,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{78}\right)\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{23}{78}\right)\) \(e\left(\frac{37}{39}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{14}{39}\right)\) \(e\left(\frac{34}{39}\right)\) \(e\left(\frac{11}{78}\right)\) \(e\left(\frac{31}{39}\right)\)
\(\chi_{3042}(1921,\cdot)\) \(1\) \(1\) \(e\left(\frac{73}{78}\right)\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{67}{78}\right)\) \(e\left(\frac{23}{39}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{34}{39}\right)\) \(e\left(\frac{38}{39}\right)\) \(e\left(\frac{49}{78}\right)\) \(e\left(\frac{14}{39}\right)\)
\(\chi_{3042}(2149,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{78}\right)\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{53}{78}\right)\) \(e\left(\frac{31}{39}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{17}{39}\right)\) \(e\left(\frac{19}{39}\right)\) \(e\left(\frac{5}{78}\right)\) \(e\left(\frac{7}{39}\right)\)
\(\chi_{3042}(2155,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{78}\right)\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{1}{78}\right)\) \(e\left(\frac{5}{39}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{4}{39}\right)\) \(e\left(\frac{32}{39}\right)\) \(e\left(\frac{31}{78}\right)\) \(e\left(\frac{20}{39}\right)\)
\(\chi_{3042}(2383,\cdot)\) \(1\) \(1\) \(e\left(\frac{59}{78}\right)\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{5}{78}\right)\) \(e\left(\frac{25}{39}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{20}{39}\right)\) \(e\left(\frac{4}{39}\right)\) \(e\left(\frac{77}{78}\right)\) \(e\left(\frac{22}{39}\right)\)
\(\chi_{3042}(2617,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{78}\right)\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{35}{78}\right)\) \(e\left(\frac{19}{39}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{23}{39}\right)\) \(e\left(\frac{28}{39}\right)\) \(e\left(\frac{71}{78}\right)\) \(e\left(\frac{37}{39}\right)\)
\(\chi_{3042}(2623,\cdot)\) \(1\) \(1\) \(e\left(\frac{61}{78}\right)\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{25}{78}\right)\) \(e\left(\frac{8}{39}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{22}{39}\right)\) \(e\left(\frac{20}{39}\right)\) \(e\left(\frac{73}{78}\right)\) \(e\left(\frac{32}{39}\right)\)
\(\chi_{3042}(2857,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{78}\right)\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{37}{78}\right)\) \(e\left(\frac{29}{39}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{31}{39}\right)\) \(e\left(\frac{14}{39}\right)\) \(e\left(\frac{55}{78}\right)\) \(e\left(\frac{38}{39}\right)\)