Properties

Label 30345.jv
Modulus $30345$
Conductor $1445$
Order $272$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(30345, base_ring=CyclotomicField(272)) M = H._module chi = DirichletCharacter(H, M([0,204,0,237])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(148,30345)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(30345\)
Conductor: \(1445\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(272\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 1445.bj
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{272})$
Fixed field: Number field defined by a degree 272 polynomial (not computed)

First 31 of 128 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(8\) \(11\) \(13\) \(16\) \(19\) \(22\) \(23\) \(26\)
\(\chi_{30345}(148,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{136}\right)\) \(e\left(\frac{41}{68}\right)\) \(e\left(\frac{123}{136}\right)\) \(e\left(\frac{11}{272}\right)\) \(e\left(\frac{1}{34}\right)\) \(e\left(\frac{7}{34}\right)\) \(e\left(\frac{95}{136}\right)\) \(e\left(\frac{93}{272}\right)\) \(e\left(\frac{151}{272}\right)\) \(e\left(\frac{45}{136}\right)\)
\(\chi_{30345}(232,\cdot)\) \(1\) \(1\) \(e\left(\frac{99}{136}\right)\) \(e\left(\frac{31}{68}\right)\) \(e\left(\frac{25}{136}\right)\) \(e\left(\frac{209}{272}\right)\) \(e\left(\frac{19}{34}\right)\) \(e\left(\frac{31}{34}\right)\) \(e\left(\frac{37}{136}\right)\) \(e\left(\frac{135}{272}\right)\) \(e\left(\frac{149}{272}\right)\) \(e\left(\frac{39}{136}\right)\)
\(\chi_{30345}(652,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{136}\right)\) \(e\left(\frac{11}{68}\right)\) \(e\left(\frac{33}{136}\right)\) \(e\left(\frac{265}{272}\right)\) \(e\left(\frac{21}{34}\right)\) \(e\left(\frac{11}{34}\right)\) \(e\left(\frac{125}{136}\right)\) \(e\left(\frac{15}{272}\right)\) \(e\left(\frac{77}{272}\right)\) \(e\left(\frac{95}{136}\right)\)
\(\chi_{30345}(1093,\cdot)\) \(1\) \(1\) \(e\left(\frac{57}{136}\right)\) \(e\left(\frac{57}{68}\right)\) \(e\left(\frac{35}{136}\right)\) \(e\left(\frac{211}{272}\right)\) \(e\left(\frac{13}{34}\right)\) \(e\left(\frac{23}{34}\right)\) \(e\left(\frac{79}{136}\right)\) \(e\left(\frac{53}{272}\right)\) \(e\left(\frac{127}{272}\right)\) \(e\left(\frac{109}{136}\right)\)
\(\chi_{30345}(1282,\cdot)\) \(1\) \(1\) \(e\left(\frac{87}{136}\right)\) \(e\left(\frac{19}{68}\right)\) \(e\left(\frac{125}{136}\right)\) \(e\left(\frac{93}{272}\right)\) \(e\left(\frac{27}{34}\right)\) \(e\left(\frac{19}{34}\right)\) \(e\left(\frac{49}{136}\right)\) \(e\left(\frac{267}{272}\right)\) \(e\left(\frac{65}{272}\right)\) \(e\left(\frac{59}{136}\right)\)
\(\chi_{30345}(1387,\cdot)\) \(1\) \(1\) \(e\left(\frac{39}{136}\right)\) \(e\left(\frac{39}{68}\right)\) \(e\left(\frac{117}{136}\right)\) \(e\left(\frac{37}{272}\right)\) \(e\left(\frac{25}{34}\right)\) \(e\left(\frac{5}{34}\right)\) \(e\left(\frac{97}{136}\right)\) \(e\left(\frac{115}{272}\right)\) \(e\left(\frac{137}{272}\right)\) \(e\left(\frac{3}{136}\right)\)
\(\chi_{30345}(1408,\cdot)\) \(1\) \(1\) \(e\left(\frac{117}{136}\right)\) \(e\left(\frac{49}{68}\right)\) \(e\left(\frac{79}{136}\right)\) \(e\left(\frac{111}{272}\right)\) \(e\left(\frac{7}{34}\right)\) \(e\left(\frac{15}{34}\right)\) \(e\left(\frac{19}{136}\right)\) \(e\left(\frac{73}{272}\right)\) \(e\left(\frac{139}{272}\right)\) \(e\left(\frac{9}{136}\right)\)
\(\chi_{30345}(1618,\cdot)\) \(1\) \(1\) \(e\left(\frac{69}{136}\right)\) \(e\left(\frac{1}{68}\right)\) \(e\left(\frac{71}{136}\right)\) \(e\left(\frac{55}{272}\right)\) \(e\left(\frac{5}{34}\right)\) \(e\left(\frac{1}{34}\right)\) \(e\left(\frac{67}{136}\right)\) \(e\left(\frac{193}{272}\right)\) \(e\left(\frac{211}{272}\right)\) \(e\left(\frac{89}{136}\right)\)
\(\chi_{30345}(1933,\cdot)\) \(1\) \(1\) \(e\left(\frac{113}{136}\right)\) \(e\left(\frac{45}{68}\right)\) \(e\left(\frac{67}{136}\right)\) \(e\left(\frac{27}{272}\right)\) \(e\left(\frac{21}{34}\right)\) \(e\left(\frac{11}{34}\right)\) \(e\left(\frac{23}{136}\right)\) \(e\left(\frac{253}{272}\right)\) \(e\left(\frac{247}{272}\right)\) \(e\left(\frac{61}{136}\right)\)
\(\chi_{30345}(2017,\cdot)\) \(1\) \(1\) \(e\left(\frac{91}{136}\right)\) \(e\left(\frac{23}{68}\right)\) \(e\left(\frac{1}{136}\right)\) \(e\left(\frac{177}{272}\right)\) \(e\left(\frac{13}{34}\right)\) \(e\left(\frac{23}{34}\right)\) \(e\left(\frac{45}{136}\right)\) \(e\left(\frac{87}{272}\right)\) \(e\left(\frac{229}{272}\right)\) \(e\left(\frac{7}{136}\right)\)
\(\chi_{30345}(2437,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{136}\right)\) \(e\left(\frac{19}{68}\right)\) \(e\left(\frac{57}{136}\right)\) \(e\left(\frac{25}{272}\right)\) \(e\left(\frac{27}{34}\right)\) \(e\left(\frac{19}{34}\right)\) \(e\left(\frac{117}{136}\right)\) \(e\left(\frac{63}{272}\right)\) \(e\left(\frac{269}{272}\right)\) \(e\left(\frac{127}{136}\right)\)
\(\chi_{30345}(2878,\cdot)\) \(1\) \(1\) \(e\left(\frac{121}{136}\right)\) \(e\left(\frac{53}{68}\right)\) \(e\left(\frac{91}{136}\right)\) \(e\left(\frac{195}{272}\right)\) \(e\left(\frac{27}{34}\right)\) \(e\left(\frac{19}{34}\right)\) \(e\left(\frac{15}{136}\right)\) \(e\left(\frac{165}{272}\right)\) \(e\left(\frac{31}{272}\right)\) \(e\left(\frac{93}{136}\right)\)
\(\chi_{30345}(3067,\cdot)\) \(1\) \(1\) \(e\left(\frac{55}{136}\right)\) \(e\left(\frac{55}{68}\right)\) \(e\left(\frac{29}{136}\right)\) \(e\left(\frac{237}{272}\right)\) \(e\left(\frac{3}{34}\right)\) \(e\left(\frac{21}{34}\right)\) \(e\left(\frac{81}{136}\right)\) \(e\left(\frac{75}{272}\right)\) \(e\left(\frac{113}{272}\right)\) \(e\left(\frac{67}{136}\right)\)
\(\chi_{30345}(3172,\cdot)\) \(1\) \(1\) \(e\left(\frac{71}{136}\right)\) \(e\left(\frac{3}{68}\right)\) \(e\left(\frac{77}{136}\right)\) \(e\left(\frac{165}{272}\right)\) \(e\left(\frac{15}{34}\right)\) \(e\left(\frac{3}{34}\right)\) \(e\left(\frac{65}{136}\right)\) \(e\left(\frac{35}{272}\right)\) \(e\left(\frac{89}{272}\right)\) \(e\left(\frac{131}{136}\right)\)
\(\chi_{30345}(3193,\cdot)\) \(1\) \(1\) \(e\left(\frac{101}{136}\right)\) \(e\left(\frac{33}{68}\right)\) \(e\left(\frac{31}{136}\right)\) \(e\left(\frac{47}{272}\right)\) \(e\left(\frac{29}{34}\right)\) \(e\left(\frac{33}{34}\right)\) \(e\left(\frac{35}{136}\right)\) \(e\left(\frac{249}{272}\right)\) \(e\left(\frac{27}{272}\right)\) \(e\left(\frac{81}{136}\right)\)
\(\chi_{30345}(3718,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{136}\right)\) \(e\left(\frac{49}{68}\right)\) \(e\left(\frac{11}{136}\right)\) \(e\left(\frac{43}{272}\right)\) \(e\left(\frac{7}{34}\right)\) \(e\left(\frac{15}{34}\right)\) \(e\left(\frac{87}{136}\right)\) \(e\left(\frac{141}{272}\right)\) \(e\left(\frac{71}{272}\right)\) \(e\left(\frac{77}{136}\right)\)
\(\chi_{30345}(3802,\cdot)\) \(1\) \(1\) \(e\left(\frac{83}{136}\right)\) \(e\left(\frac{15}{68}\right)\) \(e\left(\frac{113}{136}\right)\) \(e\left(\frac{145}{272}\right)\) \(e\left(\frac{7}{34}\right)\) \(e\left(\frac{15}{34}\right)\) \(e\left(\frac{53}{136}\right)\) \(e\left(\frac{39}{272}\right)\) \(e\left(\frac{37}{272}\right)\) \(e\left(\frac{111}{136}\right)\)
\(\chi_{30345}(4222,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{136}\right)\) \(e\left(\frac{27}{68}\right)\) \(e\left(\frac{81}{136}\right)\) \(e\left(\frac{57}{272}\right)\) \(e\left(\frac{33}{34}\right)\) \(e\left(\frac{27}{34}\right)\) \(e\left(\frac{109}{136}\right)\) \(e\left(\frac{111}{272}\right)\) \(e\left(\frac{189}{272}\right)\) \(e\left(\frac{23}{136}\right)\)
\(\chi_{30345}(4663,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{136}\right)\) \(e\left(\frac{49}{68}\right)\) \(e\left(\frac{11}{136}\right)\) \(e\left(\frac{179}{272}\right)\) \(e\left(\frac{7}{34}\right)\) \(e\left(\frac{15}{34}\right)\) \(e\left(\frac{87}{136}\right)\) \(e\left(\frac{5}{272}\right)\) \(e\left(\frac{207}{272}\right)\) \(e\left(\frac{77}{136}\right)\)
\(\chi_{30345}(4852,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{136}\right)\) \(e\left(\frac{23}{68}\right)\) \(e\left(\frac{69}{136}\right)\) \(e\left(\frac{109}{272}\right)\) \(e\left(\frac{13}{34}\right)\) \(e\left(\frac{23}{34}\right)\) \(e\left(\frac{113}{136}\right)\) \(e\left(\frac{155}{272}\right)\) \(e\left(\frac{161}{272}\right)\) \(e\left(\frac{75}{136}\right)\)
\(\chi_{30345}(4957,\cdot)\) \(1\) \(1\) \(e\left(\frac{103}{136}\right)\) \(e\left(\frac{35}{68}\right)\) \(e\left(\frac{37}{136}\right)\) \(e\left(\frac{21}{272}\right)\) \(e\left(\frac{5}{34}\right)\) \(e\left(\frac{1}{34}\right)\) \(e\left(\frac{33}{136}\right)\) \(e\left(\frac{227}{272}\right)\) \(e\left(\frac{41}{272}\right)\) \(e\left(\frac{123}{136}\right)\)
\(\chi_{30345}(5188,\cdot)\) \(1\) \(1\) \(e\left(\frac{101}{136}\right)\) \(e\left(\frac{33}{68}\right)\) \(e\left(\frac{31}{136}\right)\) \(e\left(\frac{183}{272}\right)\) \(e\left(\frac{29}{34}\right)\) \(e\left(\frac{33}{34}\right)\) \(e\left(\frac{35}{136}\right)\) \(e\left(\frac{113}{272}\right)\) \(e\left(\frac{163}{272}\right)\) \(e\left(\frac{81}{136}\right)\)
\(\chi_{30345}(5503,\cdot)\) \(1\) \(1\) \(e\left(\frac{121}{136}\right)\) \(e\left(\frac{53}{68}\right)\) \(e\left(\frac{91}{136}\right)\) \(e\left(\frac{59}{272}\right)\) \(e\left(\frac{27}{34}\right)\) \(e\left(\frac{19}{34}\right)\) \(e\left(\frac{15}{136}\right)\) \(e\left(\frac{29}{272}\right)\) \(e\left(\frac{167}{272}\right)\) \(e\left(\frac{93}{136}\right)\)
\(\chi_{30345}(5587,\cdot)\) \(1\) \(1\) \(e\left(\frac{75}{136}\right)\) \(e\left(\frac{7}{68}\right)\) \(e\left(\frac{89}{136}\right)\) \(e\left(\frac{113}{272}\right)\) \(e\left(\frac{1}{34}\right)\) \(e\left(\frac{7}{34}\right)\) \(e\left(\frac{61}{136}\right)\) \(e\left(\frac{263}{272}\right)\) \(e\left(\frac{117}{272}\right)\) \(e\left(\frac{79}{136}\right)\)
\(\chi_{30345}(6007,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{136}\right)\) \(e\left(\frac{35}{68}\right)\) \(e\left(\frac{105}{136}\right)\) \(e\left(\frac{89}{272}\right)\) \(e\left(\frac{5}{34}\right)\) \(e\left(\frac{1}{34}\right)\) \(e\left(\frac{101}{136}\right)\) \(e\left(\frac{159}{272}\right)\) \(e\left(\frac{109}{272}\right)\) \(e\left(\frac{55}{136}\right)\)
\(\chi_{30345}(6448,\cdot)\) \(1\) \(1\) \(e\left(\frac{113}{136}\right)\) \(e\left(\frac{45}{68}\right)\) \(e\left(\frac{67}{136}\right)\) \(e\left(\frac{163}{272}\right)\) \(e\left(\frac{21}{34}\right)\) \(e\left(\frac{11}{34}\right)\) \(e\left(\frac{23}{136}\right)\) \(e\left(\frac{117}{272}\right)\) \(e\left(\frac{111}{272}\right)\) \(e\left(\frac{61}{136}\right)\)
\(\chi_{30345}(6637,\cdot)\) \(1\) \(1\) \(e\left(\frac{127}{136}\right)\) \(e\left(\frac{59}{68}\right)\) \(e\left(\frac{109}{136}\right)\) \(e\left(\frac{253}{272}\right)\) \(e\left(\frac{23}{34}\right)\) \(e\left(\frac{25}{34}\right)\) \(e\left(\frac{9}{136}\right)\) \(e\left(\frac{235}{272}\right)\) \(e\left(\frac{209}{272}\right)\) \(e\left(\frac{83}{136}\right)\)
\(\chi_{30345}(6742,\cdot)\) \(1\) \(1\) \(e\left(\frac{135}{136}\right)\) \(e\left(\frac{67}{68}\right)\) \(e\left(\frac{133}{136}\right)\) \(e\left(\frac{149}{272}\right)\) \(e\left(\frac{29}{34}\right)\) \(e\left(\frac{33}{34}\right)\) \(e\left(\frac{1}{136}\right)\) \(e\left(\frac{147}{272}\right)\) \(e\left(\frac{265}{272}\right)\) \(e\left(\frac{115}{136}\right)\)
\(\chi_{30345}(6763,\cdot)\) \(1\) \(1\) \(e\left(\frac{69}{136}\right)\) \(e\left(\frac{1}{68}\right)\) \(e\left(\frac{71}{136}\right)\) \(e\left(\frac{191}{272}\right)\) \(e\left(\frac{5}{34}\right)\) \(e\left(\frac{1}{34}\right)\) \(e\left(\frac{67}{136}\right)\) \(e\left(\frac{57}{272}\right)\) \(e\left(\frac{75}{272}\right)\) \(e\left(\frac{89}{136}\right)\)
\(\chi_{30345}(6973,\cdot)\) \(1\) \(1\) \(e\left(\frac{117}{136}\right)\) \(e\left(\frac{49}{68}\right)\) \(e\left(\frac{79}{136}\right)\) \(e\left(\frac{247}{272}\right)\) \(e\left(\frac{7}{34}\right)\) \(e\left(\frac{15}{34}\right)\) \(e\left(\frac{19}{136}\right)\) \(e\left(\frac{209}{272}\right)\) \(e\left(\frac{3}{272}\right)\) \(e\left(\frac{9}{136}\right)\)
\(\chi_{30345}(7288,\cdot)\) \(1\) \(1\) \(e\left(\frac{57}{136}\right)\) \(e\left(\frac{57}{68}\right)\) \(e\left(\frac{35}{136}\right)\) \(e\left(\frac{75}{272}\right)\) \(e\left(\frac{13}{34}\right)\) \(e\left(\frac{23}{34}\right)\) \(e\left(\frac{79}{136}\right)\) \(e\left(\frac{189}{272}\right)\) \(e\left(\frac{263}{272}\right)\) \(e\left(\frac{109}{136}\right)\)