Properties

Label 30345.148
Modulus $30345$
Conductor $1445$
Order $272$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(30345, base_ring=CyclotomicField(272)) M = H._module chi = DirichletCharacter(H, M([0,204,0,237]))
 
Copy content pari:[g,chi] = znchar(Mod(148,30345))
 

Basic properties

Modulus: \(30345\)
Conductor: \(1445\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(272\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1445}(148,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 30345.jv

\(\chi_{30345}(148,\cdot)\) \(\chi_{30345}(232,\cdot)\) \(\chi_{30345}(652,\cdot)\) \(\chi_{30345}(1093,\cdot)\) \(\chi_{30345}(1282,\cdot)\) \(\chi_{30345}(1387,\cdot)\) \(\chi_{30345}(1408,\cdot)\) \(\chi_{30345}(1618,\cdot)\) \(\chi_{30345}(1933,\cdot)\) \(\chi_{30345}(2017,\cdot)\) \(\chi_{30345}(2437,\cdot)\) \(\chi_{30345}(2878,\cdot)\) \(\chi_{30345}(3067,\cdot)\) \(\chi_{30345}(3172,\cdot)\) \(\chi_{30345}(3193,\cdot)\) \(\chi_{30345}(3718,\cdot)\) \(\chi_{30345}(3802,\cdot)\) \(\chi_{30345}(4222,\cdot)\) \(\chi_{30345}(4663,\cdot)\) \(\chi_{30345}(4852,\cdot)\) \(\chi_{30345}(4957,\cdot)\) \(\chi_{30345}(5188,\cdot)\) \(\chi_{30345}(5503,\cdot)\) \(\chi_{30345}(5587,\cdot)\) \(\chi_{30345}(6007,\cdot)\) \(\chi_{30345}(6448,\cdot)\) \(\chi_{30345}(6637,\cdot)\) \(\chi_{30345}(6742,\cdot)\) \(\chi_{30345}(6763,\cdot)\) \(\chi_{30345}(6973,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{272})$
Fixed field: Number field defined by a degree 272 polynomial (not computed)

Values on generators

\((20231,24277,4336,28036)\) → \((1,-i,1,e\left(\frac{237}{272}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(8\)\(11\)\(13\)\(16\)\(19\)\(22\)\(23\)\(26\)
\( \chi_{ 30345 }(148, a) \) \(1\)\(1\)\(e\left(\frac{41}{136}\right)\)\(e\left(\frac{41}{68}\right)\)\(e\left(\frac{123}{136}\right)\)\(e\left(\frac{11}{272}\right)\)\(e\left(\frac{1}{34}\right)\)\(e\left(\frac{7}{34}\right)\)\(e\left(\frac{95}{136}\right)\)\(e\left(\frac{93}{272}\right)\)\(e\left(\frac{151}{272}\right)\)\(e\left(\frac{45}{136}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 30345 }(148,a) \;\) at \(\;a = \) e.g. 2