Properties

Label 30345.hf
Modulus $30345$
Conductor $6069$
Order $102$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(30345, base_ring=CyclotomicField(102)) M = H._module chi = DirichletCharacter(H, M([51,0,85,12])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(341,30345)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(30345\)
Conductor: \(6069\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(102\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 6069.cd
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{51})$
Fixed field: Number field defined by a degree 102 polynomial (not computed)

First 31 of 32 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(8\) \(11\) \(13\) \(16\) \(19\) \(22\) \(23\) \(26\)
\(\chi_{30345}(341,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{102}\right)\) \(e\left(\frac{2}{51}\right)\) \(e\left(\frac{19}{34}\right)\) \(e\left(\frac{55}{102}\right)\) \(e\left(\frac{19}{34}\right)\) \(e\left(\frac{4}{51}\right)\) \(e\left(\frac{83}{102}\right)\) \(e\left(\frac{1}{17}\right)\) \(e\left(\frac{41}{102}\right)\) \(e\left(\frac{4}{51}\right)\)
\(\chi_{30345}(1361,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{102}\right)\) \(e\left(\frac{25}{51}\right)\) \(e\left(\frac{25}{34}\right)\) \(e\left(\frac{101}{102}\right)\) \(e\left(\frac{25}{34}\right)\) \(e\left(\frac{50}{51}\right)\) \(e\left(\frac{43}{102}\right)\) \(e\left(\frac{4}{17}\right)\) \(e\left(\frac{79}{102}\right)\) \(e\left(\frac{50}{51}\right)\)
\(\chi_{30345}(2126,\cdot)\) \(1\) \(1\) \(e\left(\frac{89}{102}\right)\) \(e\left(\frac{38}{51}\right)\) \(e\left(\frac{21}{34}\right)\) \(e\left(\frac{25}{102}\right)\) \(e\left(\frac{21}{34}\right)\) \(e\left(\frac{25}{51}\right)\) \(e\left(\frac{47}{102}\right)\) \(e\left(\frac{2}{17}\right)\) \(e\left(\frac{65}{102}\right)\) \(e\left(\frac{25}{51}\right)\)
\(\chi_{30345}(3146,\cdot)\) \(1\) \(1\) \(e\left(\frac{61}{102}\right)\) \(e\left(\frac{10}{51}\right)\) \(e\left(\frac{27}{34}\right)\) \(e\left(\frac{71}{102}\right)\) \(e\left(\frac{27}{34}\right)\) \(e\left(\frac{20}{51}\right)\) \(e\left(\frac{7}{102}\right)\) \(e\left(\frac{5}{17}\right)\) \(e\left(\frac{1}{102}\right)\) \(e\left(\frac{20}{51}\right)\)
\(\chi_{30345}(3911,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{102}\right)\) \(e\left(\frac{23}{51}\right)\) \(e\left(\frac{23}{34}\right)\) \(e\left(\frac{97}{102}\right)\) \(e\left(\frac{23}{34}\right)\) \(e\left(\frac{46}{51}\right)\) \(e\left(\frac{11}{102}\right)\) \(e\left(\frac{3}{17}\right)\) \(e\left(\frac{89}{102}\right)\) \(e\left(\frac{46}{51}\right)\)
\(\chi_{30345}(4931,\cdot)\) \(1\) \(1\) \(e\left(\frac{97}{102}\right)\) \(e\left(\frac{46}{51}\right)\) \(e\left(\frac{29}{34}\right)\) \(e\left(\frac{41}{102}\right)\) \(e\left(\frac{29}{34}\right)\) \(e\left(\frac{41}{51}\right)\) \(e\left(\frac{73}{102}\right)\) \(e\left(\frac{6}{17}\right)\) \(e\left(\frac{25}{102}\right)\) \(e\left(\frac{41}{51}\right)\)
\(\chi_{30345}(5696,\cdot)\) \(1\) \(1\) \(e\left(\frac{59}{102}\right)\) \(e\left(\frac{8}{51}\right)\) \(e\left(\frac{25}{34}\right)\) \(e\left(\frac{67}{102}\right)\) \(e\left(\frac{25}{34}\right)\) \(e\left(\frac{16}{51}\right)\) \(e\left(\frac{77}{102}\right)\) \(e\left(\frac{4}{17}\right)\) \(e\left(\frac{11}{102}\right)\) \(e\left(\frac{16}{51}\right)\)
\(\chi_{30345}(6716,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{102}\right)\) \(e\left(\frac{31}{51}\right)\) \(e\left(\frac{31}{34}\right)\) \(e\left(\frac{11}{102}\right)\) \(e\left(\frac{31}{34}\right)\) \(e\left(\frac{11}{51}\right)\) \(e\left(\frac{37}{102}\right)\) \(e\left(\frac{7}{17}\right)\) \(e\left(\frac{49}{102}\right)\) \(e\left(\frac{11}{51}\right)\)
\(\chi_{30345}(7481,\cdot)\) \(1\) \(1\) \(e\left(\frac{95}{102}\right)\) \(e\left(\frac{44}{51}\right)\) \(e\left(\frac{27}{34}\right)\) \(e\left(\frac{37}{102}\right)\) \(e\left(\frac{27}{34}\right)\) \(e\left(\frac{37}{51}\right)\) \(e\left(\frac{41}{102}\right)\) \(e\left(\frac{5}{17}\right)\) \(e\left(\frac{35}{102}\right)\) \(e\left(\frac{37}{51}\right)\)
\(\chi_{30345}(8501,\cdot)\) \(1\) \(1\) \(e\left(\frac{67}{102}\right)\) \(e\left(\frac{16}{51}\right)\) \(e\left(\frac{33}{34}\right)\) \(e\left(\frac{83}{102}\right)\) \(e\left(\frac{33}{34}\right)\) \(e\left(\frac{32}{51}\right)\) \(e\left(\frac{1}{102}\right)\) \(e\left(\frac{8}{17}\right)\) \(e\left(\frac{73}{102}\right)\) \(e\left(\frac{32}{51}\right)\)
\(\chi_{30345}(9266,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{102}\right)\) \(e\left(\frac{29}{51}\right)\) \(e\left(\frac{29}{34}\right)\) \(e\left(\frac{7}{102}\right)\) \(e\left(\frac{29}{34}\right)\) \(e\left(\frac{7}{51}\right)\) \(e\left(\frac{5}{102}\right)\) \(e\left(\frac{6}{17}\right)\) \(e\left(\frac{59}{102}\right)\) \(e\left(\frac{7}{51}\right)\)
\(\chi_{30345}(10286,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{102}\right)\) \(e\left(\frac{1}{51}\right)\) \(e\left(\frac{1}{34}\right)\) \(e\left(\frac{53}{102}\right)\) \(e\left(\frac{1}{34}\right)\) \(e\left(\frac{2}{51}\right)\) \(e\left(\frac{67}{102}\right)\) \(e\left(\frac{9}{17}\right)\) \(e\left(\frac{97}{102}\right)\) \(e\left(\frac{2}{51}\right)\)
\(\chi_{30345}(11051,\cdot)\) \(1\) \(1\) \(e\left(\frac{65}{102}\right)\) \(e\left(\frac{14}{51}\right)\) \(e\left(\frac{31}{34}\right)\) \(e\left(\frac{79}{102}\right)\) \(e\left(\frac{31}{34}\right)\) \(e\left(\frac{28}{51}\right)\) \(e\left(\frac{71}{102}\right)\) \(e\left(\frac{7}{17}\right)\) \(e\left(\frac{83}{102}\right)\) \(e\left(\frac{28}{51}\right)\)
\(\chi_{30345}(12071,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{102}\right)\) \(e\left(\frac{37}{51}\right)\) \(e\left(\frac{3}{34}\right)\) \(e\left(\frac{23}{102}\right)\) \(e\left(\frac{3}{34}\right)\) \(e\left(\frac{23}{51}\right)\) \(e\left(\frac{31}{102}\right)\) \(e\left(\frac{10}{17}\right)\) \(e\left(\frac{19}{102}\right)\) \(e\left(\frac{23}{51}\right)\)
\(\chi_{30345}(12836,\cdot)\) \(1\) \(1\) \(e\left(\frac{101}{102}\right)\) \(e\left(\frac{50}{51}\right)\) \(e\left(\frac{33}{34}\right)\) \(e\left(\frac{49}{102}\right)\) \(e\left(\frac{33}{34}\right)\) \(e\left(\frac{49}{51}\right)\) \(e\left(\frac{35}{102}\right)\) \(e\left(\frac{8}{17}\right)\) \(e\left(\frac{5}{102}\right)\) \(e\left(\frac{49}{51}\right)\)
\(\chi_{30345}(13856,\cdot)\) \(1\) \(1\) \(e\left(\frac{73}{102}\right)\) \(e\left(\frac{22}{51}\right)\) \(e\left(\frac{5}{34}\right)\) \(e\left(\frac{95}{102}\right)\) \(e\left(\frac{5}{34}\right)\) \(e\left(\frac{44}{51}\right)\) \(e\left(\frac{97}{102}\right)\) \(e\left(\frac{11}{17}\right)\) \(e\left(\frac{43}{102}\right)\) \(e\left(\frac{44}{51}\right)\)
\(\chi_{30345}(14621,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{102}\right)\) \(e\left(\frac{35}{51}\right)\) \(e\left(\frac{1}{34}\right)\) \(e\left(\frac{19}{102}\right)\) \(e\left(\frac{1}{34}\right)\) \(e\left(\frac{19}{51}\right)\) \(e\left(\frac{101}{102}\right)\) \(e\left(\frac{9}{17}\right)\) \(e\left(\frac{29}{102}\right)\) \(e\left(\frac{19}{51}\right)\)
\(\chi_{30345}(15641,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{102}\right)\) \(e\left(\frac{7}{51}\right)\) \(e\left(\frac{7}{34}\right)\) \(e\left(\frac{65}{102}\right)\) \(e\left(\frac{7}{34}\right)\) \(e\left(\frac{14}{51}\right)\) \(e\left(\frac{61}{102}\right)\) \(e\left(\frac{12}{17}\right)\) \(e\left(\frac{67}{102}\right)\) \(e\left(\frac{14}{51}\right)\)
\(\chi_{30345}(16406,\cdot)\) \(1\) \(1\) \(e\left(\frac{71}{102}\right)\) \(e\left(\frac{20}{51}\right)\) \(e\left(\frac{3}{34}\right)\) \(e\left(\frac{91}{102}\right)\) \(e\left(\frac{3}{34}\right)\) \(e\left(\frac{40}{51}\right)\) \(e\left(\frac{65}{102}\right)\) \(e\left(\frac{10}{17}\right)\) \(e\left(\frac{53}{102}\right)\) \(e\left(\frac{40}{51}\right)\)
\(\chi_{30345}(17426,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{102}\right)\) \(e\left(\frac{43}{51}\right)\) \(e\left(\frac{9}{34}\right)\) \(e\left(\frac{35}{102}\right)\) \(e\left(\frac{9}{34}\right)\) \(e\left(\frac{35}{51}\right)\) \(e\left(\frac{25}{102}\right)\) \(e\left(\frac{13}{17}\right)\) \(e\left(\frac{91}{102}\right)\) \(e\left(\frac{35}{51}\right)\)
\(\chi_{30345}(18191,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{102}\right)\) \(e\left(\frac{5}{51}\right)\) \(e\left(\frac{5}{34}\right)\) \(e\left(\frac{61}{102}\right)\) \(e\left(\frac{5}{34}\right)\) \(e\left(\frac{10}{51}\right)\) \(e\left(\frac{29}{102}\right)\) \(e\left(\frac{11}{17}\right)\) \(e\left(\frac{77}{102}\right)\) \(e\left(\frac{10}{51}\right)\)
\(\chi_{30345}(19211,\cdot)\) \(1\) \(1\) \(e\left(\frac{79}{102}\right)\) \(e\left(\frac{28}{51}\right)\) \(e\left(\frac{11}{34}\right)\) \(e\left(\frac{5}{102}\right)\) \(e\left(\frac{11}{34}\right)\) \(e\left(\frac{5}{51}\right)\) \(e\left(\frac{91}{102}\right)\) \(e\left(\frac{14}{17}\right)\) \(e\left(\frac{13}{102}\right)\) \(e\left(\frac{5}{51}\right)\)
\(\chi_{30345}(19976,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{102}\right)\) \(e\left(\frac{41}{51}\right)\) \(e\left(\frac{7}{34}\right)\) \(e\left(\frac{31}{102}\right)\) \(e\left(\frac{7}{34}\right)\) \(e\left(\frac{31}{51}\right)\) \(e\left(\frac{95}{102}\right)\) \(e\left(\frac{12}{17}\right)\) \(e\left(\frac{101}{102}\right)\) \(e\left(\frac{31}{51}\right)\)
\(\chi_{30345}(20996,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{102}\right)\) \(e\left(\frac{13}{51}\right)\) \(e\left(\frac{13}{34}\right)\) \(e\left(\frac{77}{102}\right)\) \(e\left(\frac{13}{34}\right)\) \(e\left(\frac{26}{51}\right)\) \(e\left(\frac{55}{102}\right)\) \(e\left(\frac{15}{17}\right)\) \(e\left(\frac{37}{102}\right)\) \(e\left(\frac{26}{51}\right)\)
\(\chi_{30345}(21761,\cdot)\) \(1\) \(1\) \(e\left(\frac{77}{102}\right)\) \(e\left(\frac{26}{51}\right)\) \(e\left(\frac{9}{34}\right)\) \(e\left(\frac{1}{102}\right)\) \(e\left(\frac{9}{34}\right)\) \(e\left(\frac{1}{51}\right)\) \(e\left(\frac{59}{102}\right)\) \(e\left(\frac{13}{17}\right)\) \(e\left(\frac{23}{102}\right)\) \(e\left(\frac{1}{51}\right)\)
\(\chi_{30345}(22781,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{102}\right)\) \(e\left(\frac{49}{51}\right)\) \(e\left(\frac{15}{34}\right)\) \(e\left(\frac{47}{102}\right)\) \(e\left(\frac{15}{34}\right)\) \(e\left(\frac{47}{51}\right)\) \(e\left(\frac{19}{102}\right)\) \(e\left(\frac{16}{17}\right)\) \(e\left(\frac{61}{102}\right)\) \(e\left(\frac{47}{51}\right)\)
\(\chi_{30345}(23546,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{102}\right)\) \(e\left(\frac{11}{51}\right)\) \(e\left(\frac{11}{34}\right)\) \(e\left(\frac{73}{102}\right)\) \(e\left(\frac{11}{34}\right)\) \(e\left(\frac{22}{51}\right)\) \(e\left(\frac{23}{102}\right)\) \(e\left(\frac{14}{17}\right)\) \(e\left(\frac{47}{102}\right)\) \(e\left(\frac{22}{51}\right)\)
\(\chi_{30345}(25331,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{102}\right)\) \(e\left(\frac{47}{51}\right)\) \(e\left(\frac{13}{34}\right)\) \(e\left(\frac{43}{102}\right)\) \(e\left(\frac{13}{34}\right)\) \(e\left(\frac{43}{51}\right)\) \(e\left(\frac{89}{102}\right)\) \(e\left(\frac{15}{17}\right)\) \(e\left(\frac{71}{102}\right)\) \(e\left(\frac{43}{51}\right)\)
\(\chi_{30345}(26351,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{102}\right)\) \(e\left(\frac{19}{51}\right)\) \(e\left(\frac{19}{34}\right)\) \(e\left(\frac{89}{102}\right)\) \(e\left(\frac{19}{34}\right)\) \(e\left(\frac{38}{51}\right)\) \(e\left(\frac{49}{102}\right)\) \(e\left(\frac{1}{17}\right)\) \(e\left(\frac{7}{102}\right)\) \(e\left(\frac{38}{51}\right)\)
\(\chi_{30345}(27116,\cdot)\) \(1\) \(1\) \(e\left(\frac{83}{102}\right)\) \(e\left(\frac{32}{51}\right)\) \(e\left(\frac{15}{34}\right)\) \(e\left(\frac{13}{102}\right)\) \(e\left(\frac{15}{34}\right)\) \(e\left(\frac{13}{51}\right)\) \(e\left(\frac{53}{102}\right)\) \(e\left(\frac{16}{17}\right)\) \(e\left(\frac{95}{102}\right)\) \(e\left(\frac{13}{51}\right)\)
\(\chi_{30345}(28136,\cdot)\) \(1\) \(1\) \(e\left(\frac{55}{102}\right)\) \(e\left(\frac{4}{51}\right)\) \(e\left(\frac{21}{34}\right)\) \(e\left(\frac{59}{102}\right)\) \(e\left(\frac{21}{34}\right)\) \(e\left(\frac{8}{51}\right)\) \(e\left(\frac{13}{102}\right)\) \(e\left(\frac{2}{17}\right)\) \(e\left(\frac{31}{102}\right)\) \(e\left(\frac{8}{51}\right)\)