Properties

Label 30345.341
Modulus $30345$
Conductor $6069$
Order $102$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(30345, base_ring=CyclotomicField(102)) M = H._module chi = DirichletCharacter(H, M([51,0,85,12]))
 
Copy content pari:[g,chi] = znchar(Mod(341,30345))
 

Basic properties

Modulus: \(30345\)
Conductor: \(6069\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(102\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{6069}(341,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 30345.hf

\(\chi_{30345}(341,\cdot)\) \(\chi_{30345}(1361,\cdot)\) \(\chi_{30345}(2126,\cdot)\) \(\chi_{30345}(3146,\cdot)\) \(\chi_{30345}(3911,\cdot)\) \(\chi_{30345}(4931,\cdot)\) \(\chi_{30345}(5696,\cdot)\) \(\chi_{30345}(6716,\cdot)\) \(\chi_{30345}(7481,\cdot)\) \(\chi_{30345}(8501,\cdot)\) \(\chi_{30345}(9266,\cdot)\) \(\chi_{30345}(10286,\cdot)\) \(\chi_{30345}(11051,\cdot)\) \(\chi_{30345}(12071,\cdot)\) \(\chi_{30345}(12836,\cdot)\) \(\chi_{30345}(13856,\cdot)\) \(\chi_{30345}(14621,\cdot)\) \(\chi_{30345}(15641,\cdot)\) \(\chi_{30345}(16406,\cdot)\) \(\chi_{30345}(17426,\cdot)\) \(\chi_{30345}(18191,\cdot)\) \(\chi_{30345}(19211,\cdot)\) \(\chi_{30345}(19976,\cdot)\) \(\chi_{30345}(20996,\cdot)\) \(\chi_{30345}(21761,\cdot)\) \(\chi_{30345}(22781,\cdot)\) \(\chi_{30345}(23546,\cdot)\) \(\chi_{30345}(25331,\cdot)\) \(\chi_{30345}(26351,\cdot)\) \(\chi_{30345}(27116,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{51})$
Fixed field: Number field defined by a degree 102 polynomial (not computed)

Values on generators

\((20231,24277,4336,28036)\) → \((-1,1,e\left(\frac{5}{6}\right),e\left(\frac{2}{17}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(8\)\(11\)\(13\)\(16\)\(19\)\(22\)\(23\)\(26\)
\( \chi_{ 30345 }(341, a) \) \(1\)\(1\)\(e\left(\frac{53}{102}\right)\)\(e\left(\frac{2}{51}\right)\)\(e\left(\frac{19}{34}\right)\)\(e\left(\frac{55}{102}\right)\)\(e\left(\frac{19}{34}\right)\)\(e\left(\frac{4}{51}\right)\)\(e\left(\frac{83}{102}\right)\)\(e\left(\frac{1}{17}\right)\)\(e\left(\frac{41}{102}\right)\)\(e\left(\frac{4}{51}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 30345 }(341,a) \;\) at \(\;a = \) e.g. 2