Properties

Label 30345.10768
Modulus $30345$
Conductor $595$
Order $48$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(30345, base_ring=CyclotomicField(48)) M = H._module chi = DirichletCharacter(H, M([0,36,16,33]))
 
Copy content pari:[g,chi] = znchar(Mod(10768,30345))
 

Basic properties

Modulus: \(30345\)
Conductor: \(595\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(48\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{595}(58,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 30345.gd

\(\chi_{30345}(802,\cdot)\) \(\chi_{30345}(1948,\cdot)\) \(\chi_{30345}(2377,\cdot)\) \(\chi_{30345}(6283,\cdot)\) \(\chi_{30345}(10768,\cdot)\) \(\chi_{30345}(12007,\cdot)\) \(\chi_{30345}(12847,\cdot)\) \(\chi_{30345}(15103,\cdot)\) \(\chi_{30345}(16342,\cdot)\) \(\chi_{30345}(17182,\cdot)\) \(\chi_{30345}(20848,\cdot)\) \(\chi_{30345}(22213,\cdot)\) \(\chi_{30345}(25183,\cdot)\) \(\chi_{30345}(26548,\cdot)\) \(\chi_{30345}(26812,\cdot)\) \(\chi_{30345}(28387,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{48})\)
Fixed field: Number field defined by a degree 48 polynomial

Values on generators

\((20231,24277,4336,28036)\) → \((1,-i,e\left(\frac{1}{3}\right),e\left(\frac{11}{16}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(8\)\(11\)\(13\)\(16\)\(19\)\(22\)\(23\)\(26\)
\( \chi_{ 30345 }(10768, a) \) \(1\)\(1\)\(e\left(\frac{1}{24}\right)\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{1}{8}\right)\)\(e\left(\frac{7}{48}\right)\)\(1\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{19}{24}\right)\)\(e\left(\frac{3}{16}\right)\)\(e\left(\frac{11}{48}\right)\)\(e\left(\frac{1}{24}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 30345 }(10768,a) \;\) at \(\;a = \) e.g. 2