Properties

Label 3024.gn
Modulus $3024$
Conductor $3024$
Order $36$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3024, base_ring=CyclotomicField(36)) M = H._module chi = DirichletCharacter(H, M([0,9,34,12])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(149,3024)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(3024\)
Conductor: \(3024\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(36\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{36})\)
Fixed field: Number field defined by a degree 36 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(11\) \(13\) \(17\) \(19\) \(23\) \(25\) \(29\) \(31\) \(37\)
\(\chi_{3024}(149,\cdot)\) \(-1\) \(1\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{11}{36}\right)\) \(-1\) \(-i\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{7}{12}\right)\)
\(\chi_{3024}(389,\cdot)\) \(-1\) \(1\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{19}{36}\right)\) \(-1\) \(-i\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{11}{12}\right)\)
\(\chi_{3024}(653,\cdot)\) \(-1\) \(1\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{17}{36}\right)\) \(-1\) \(i\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{12}\right)\)
\(\chi_{3024}(893,\cdot)\) \(-1\) \(1\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{25}{36}\right)\) \(-1\) \(i\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{5}{12}\right)\)
\(\chi_{3024}(1157,\cdot)\) \(-1\) \(1\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{23}{36}\right)\) \(-1\) \(-i\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{7}{12}\right)\)
\(\chi_{3024}(1397,\cdot)\) \(-1\) \(1\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{31}{36}\right)\) \(-1\) \(-i\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{11}{12}\right)\)
\(\chi_{3024}(1661,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{29}{36}\right)\) \(-1\) \(i\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{12}\right)\)
\(\chi_{3024}(1901,\cdot)\) \(-1\) \(1\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{1}{36}\right)\) \(-1\) \(i\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{5}{12}\right)\)
\(\chi_{3024}(2165,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{35}{36}\right)\) \(-1\) \(-i\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{7}{12}\right)\)
\(\chi_{3024}(2405,\cdot)\) \(-1\) \(1\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{7}{36}\right)\) \(-1\) \(-i\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{11}{12}\right)\)
\(\chi_{3024}(2669,\cdot)\) \(-1\) \(1\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{5}{36}\right)\) \(-1\) \(i\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{12}\right)\)
\(\chi_{3024}(2909,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{13}{36}\right)\) \(-1\) \(i\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{5}{12}\right)\)