sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3024, base_ring=CyclotomicField(36))
M = H._module
chi = DirichletCharacter(H, M([18,27,2,6]))
pari:[g,chi] = znchar(Mod(2243,3024))
Modulus: | \(3024\) | |
Conductor: | \(3024\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(36\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{3024}(131,\cdot)\)
\(\chi_{3024}(227,\cdot)\)
\(\chi_{3024}(635,\cdot)\)
\(\chi_{3024}(731,\cdot)\)
\(\chi_{3024}(1139,\cdot)\)
\(\chi_{3024}(1235,\cdot)\)
\(\chi_{3024}(1643,\cdot)\)
\(\chi_{3024}(1739,\cdot)\)
\(\chi_{3024}(2147,\cdot)\)
\(\chi_{3024}(2243,\cdot)\)
\(\chi_{3024}(2651,\cdot)\)
\(\chi_{3024}(2747,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1135,757,785,2593)\) → \((-1,-i,e\left(\frac{1}{18}\right),e\left(\frac{1}{6}\right))\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(37\) |
\( \chi_{ 3024 }(2243, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(1\) | \(i\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{5}{12}\right)\) |
sage:chi.jacobi_sum(n)