Properties

Label 2940.1651
Modulus $2940$
Conductor $196$
Order $14$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2940, base_ring=CyclotomicField(14)) M = H._module chi = DirichletCharacter(H, M([7,0,0,3]))
 
Copy content pari:[g,chi] = znchar(Mod(1651,2940))
 

Basic properties

Modulus: \(2940\)
Conductor: \(196\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(14\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{196}(83,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2940.cl

\(\chi_{2940}(811,\cdot)\) \(\chi_{2940}(1231,\cdot)\) \(\chi_{2940}(1651,\cdot)\) \(\chi_{2940}(2071,\cdot)\) \(\chi_{2940}(2491,\cdot)\) \(\chi_{2940}(2911,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{7})\)
Fixed field: 14.14.21972068264574400934821888.1

Values on generators

\((1471,1961,1177,1081)\) → \((-1,1,1,e\left(\frac{3}{14}\right))\)

First values

\(a\) \(-1\)\(1\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 2940 }(1651, a) \) \(1\)\(1\)\(e\left(\frac{1}{14}\right)\)\(e\left(\frac{1}{14}\right)\)\(e\left(\frac{5}{14}\right)\)\(1\)\(e\left(\frac{9}{14}\right)\)\(e\left(\frac{6}{7}\right)\)\(1\)\(e\left(\frac{6}{7}\right)\)\(e\left(\frac{3}{14}\right)\)\(e\left(\frac{11}{14}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2940 }(1651,a) \;\) at \(\;a = \) e.g. 2