sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2940, base_ring=CyclotomicField(14))
M = H._module
chi = DirichletCharacter(H, M([7,0,0,3]))
pari:[g,chi] = znchar(Mod(1651,2940))
\(\chi_{2940}(811,\cdot)\)
\(\chi_{2940}(1231,\cdot)\)
\(\chi_{2940}(1651,\cdot)\)
\(\chi_{2940}(2071,\cdot)\)
\(\chi_{2940}(2491,\cdot)\)
\(\chi_{2940}(2911,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1471,1961,1177,1081)\) → \((-1,1,1,e\left(\frac{3}{14}\right))\)
\(a\) |
\(-1\) | \(1\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
\( \chi_{ 2940 }(1651, a) \) |
\(1\) | \(1\) | \(e\left(\frac{1}{14}\right)\) | \(e\left(\frac{1}{14}\right)\) | \(e\left(\frac{5}{14}\right)\) | \(1\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(1\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{11}{14}\right)\) |
sage:chi.jacobi_sum(n)