sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2912, base_ring=CyclotomicField(24))
M = H._module
chi = DirichletCharacter(H, M([12,21,12,16]))
pari:[g,chi] = znchar(Mod(2323,2912))
Modulus: | \(2912\) | |
Conductor: | \(2912\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(24\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2912}(139,\cdot)\)
\(\chi_{2912}(419,\cdot)\)
\(\chi_{2912}(867,\cdot)\)
\(\chi_{2912}(1147,\cdot)\)
\(\chi_{2912}(1595,\cdot)\)
\(\chi_{2912}(1875,\cdot)\)
\(\chi_{2912}(2323,\cdot)\)
\(\chi_{2912}(2603,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((2367,1093,1249,2017)\) → \((-1,e\left(\frac{7}{8}\right),-1,e\left(\frac{2}{3}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(9\) | \(11\) | \(15\) | \(17\) | \(19\) | \(23\) | \(25\) | \(27\) |
\( \chi_{ 2912 }(2323, a) \) |
\(1\) | \(1\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(-i\) | \(e\left(\frac{7}{8}\right)\) |
sage:chi.jacobi_sum(n)