L(s) = 1 | + (−0.258 + 0.965i)3-s + (−0.707 + 0.707i)5-s + (−0.866 − 0.5i)9-s + (−0.965 − 0.258i)11-s + (−0.5 − 0.866i)15-s + (−0.5 + 0.866i)17-s + (−0.965 + 0.258i)19-s + (−0.866 + 0.5i)23-s − i·25-s + (0.707 − 0.707i)27-s + (−0.258 + 0.965i)29-s + 31-s + (0.5 − 0.866i)33-s + (−0.965 − 0.258i)37-s + (−0.866 + 0.5i)41-s + ⋯ |
L(s) = 1 | + (−0.258 + 0.965i)3-s + (−0.707 + 0.707i)5-s + (−0.866 − 0.5i)9-s + (−0.965 − 0.258i)11-s + (−0.5 − 0.866i)15-s + (−0.5 + 0.866i)17-s + (−0.965 + 0.258i)19-s + (−0.866 + 0.5i)23-s − i·25-s + (0.707 − 0.707i)27-s + (−0.258 + 0.965i)29-s + 31-s + (0.5 − 0.866i)33-s + (−0.965 − 0.258i)37-s + (−0.866 + 0.5i)41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2912 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.894 - 0.448i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2912 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.894 - 0.448i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.1768278504 - 0.04182863731i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1768278504 - 0.04182863731i\) |
\(L(1)\) |
\(\approx\) |
\(0.5309242485 + 0.2849217352i\) |
\(L(1)\) |
\(\approx\) |
\(0.5309242485 + 0.2849217352i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + (-0.258 + 0.965i)T \) |
| 5 | \( 1 + (-0.707 + 0.707i)T \) |
| 11 | \( 1 + (-0.965 - 0.258i)T \) |
| 17 | \( 1 + (-0.5 + 0.866i)T \) |
| 19 | \( 1 + (-0.965 + 0.258i)T \) |
| 23 | \( 1 + (-0.866 + 0.5i)T \) |
| 29 | \( 1 + (-0.258 + 0.965i)T \) |
| 31 | \( 1 + T \) |
| 37 | \( 1 + (-0.965 - 0.258i)T \) |
| 41 | \( 1 + (-0.866 + 0.5i)T \) |
| 43 | \( 1 + (0.258 + 0.965i)T \) |
| 47 | \( 1 - T \) |
| 53 | \( 1 + (-0.707 + 0.707i)T \) |
| 59 | \( 1 + (0.258 + 0.965i)T \) |
| 61 | \( 1 + (-0.965 + 0.258i)T \) |
| 67 | \( 1 + (0.258 - 0.965i)T \) |
| 71 | \( 1 + (-0.866 - 0.5i)T \) |
| 73 | \( 1 - iT \) |
| 79 | \( 1 + T \) |
| 83 | \( 1 + (0.707 + 0.707i)T \) |
| 89 | \( 1 + (0.866 - 0.5i)T \) |
| 97 | \( 1 + (0.5 - 0.866i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.92621704568707830894654571717, −18.76843266544627587388316365266, −17.59817132426617136744403370605, −17.347958330367829527493671684971, −16.33685875688131890817714731733, −15.77148684362627098376703861272, −15.09945221232806415898084065931, −14.035634940288733771874614300495, −13.352957489515868677857139338637, −12.84168887941456349194259477810, −12.07878063235524664463442204276, −11.62064255490503541575796773339, −10.78104290113273969499500517331, −9.95390377994094141222780587657, −8.82447236451523232234064891928, −8.26947990736643669582728294937, −7.68940786436786790017885105195, −6.89650347751371013742802733802, −6.177767517255589927413170975141, −5.12502211319491632089075428055, −4.70375982769881343931597820253, −3.60823835226162918894434120965, −2.49130898275845389816929561365, −1.89607238470634693386326824313, −0.61920248597036843342824524314,
0.08988997293786658654024103993, 1.8281491231051023747478383821, 2.92753233954105988027976233563, 3.4892308844321305131315288801, 4.325890611001452200906843825678, 4.961987735239719706451120692217, 6.042063049352209632188959181836, 6.4848580164360944409657310658, 7.68288467789341650351383279558, 8.25985097054912028522999437573, 8.9938081484280441854854008054, 10.094094396325399437921739154, 10.5490128411273326856591305866, 11.03685861356837979815239283001, 11.85292867550938701821541796608, 12.558289519327057567302082432654, 13.54261550881298867795391460395, 14.35918915984707616535230499695, 15.12544346568817637495460542884, 15.4477113367676589149797431950, 16.19430278280978441092661724830, 16.80859502347786880728924749279, 17.77486271850921145497398128146, 18.22192233097788698814919701960, 19.281889597509015443494019608464