sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2900, base_ring=CyclotomicField(140))
M = H._module
chi = DirichletCharacter(H, M([70,126,125]))
pari:[g,chi] = znchar(Mod(1519,2900))
| Modulus: | \(2900\) | |
| Conductor: | \(2900\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(140\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2900}(19,\cdot)\)
\(\chi_{2900}(39,\cdot)\)
\(\chi_{2900}(79,\cdot)\)
\(\chi_{2900}(119,\cdot)\)
\(\chi_{2900}(159,\cdot)\)
\(\chi_{2900}(259,\cdot)\)
\(\chi_{2900}(279,\cdot)\)
\(\chi_{2900}(359,\cdot)\)
\(\chi_{2900}(379,\cdot)\)
\(\chi_{2900}(479,\cdot)\)
\(\chi_{2900}(519,\cdot)\)
\(\chi_{2900}(559,\cdot)\)
\(\chi_{2900}(619,\cdot)\)
\(\chi_{2900}(659,\cdot)\)
\(\chi_{2900}(739,\cdot)\)
\(\chi_{2900}(839,\cdot)\)
\(\chi_{2900}(859,\cdot)\)
\(\chi_{2900}(939,\cdot)\)
\(\chi_{2900}(959,\cdot)\)
\(\chi_{2900}(1059,\cdot)\)
\(\chi_{2900}(1139,\cdot)\)
\(\chi_{2900}(1179,\cdot)\)
\(\chi_{2900}(1239,\cdot)\)
\(\chi_{2900}(1279,\cdot)\)
\(\chi_{2900}(1319,\cdot)\)
\(\chi_{2900}(1419,\cdot)\)
\(\chi_{2900}(1439,\cdot)\)
\(\chi_{2900}(1519,\cdot)\)
\(\chi_{2900}(1539,\cdot)\)
\(\chi_{2900}(1639,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1451,1277,901)\) → \((-1,e\left(\frac{9}{10}\right),e\left(\frac{25}{28}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) |
| \( \chi_{ 2900 }(1519, a) \) |
\(1\) | \(1\) | \(e\left(\frac{37}{140}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{37}{70}\right)\) | \(e\left(\frac{31}{140}\right)\) | \(e\left(\frac{6}{35}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{103}{140}\right)\) | \(e\left(\frac{137}{140}\right)\) | \(e\left(\frac{9}{35}\right)\) | \(e\left(\frac{111}{140}\right)\) |
sage:chi.jacobi_sum(n)