| L(s) = 1 | + (−0.0896 + 0.995i)3-s + (−0.222 − 0.974i)7-s + (−0.983 − 0.178i)9-s + (0.178 + 0.983i)11-s + (0.473 + 0.880i)13-s + (−0.951 + 0.309i)17-s + (−0.0896 − 0.995i)19-s + (0.990 − 0.134i)21-s + (−0.0448 + 0.998i)23-s + (0.266 − 0.963i)27-s + (−0.834 − 0.550i)31-s + (−0.995 + 0.0896i)33-s + (0.178 − 0.983i)37-s + (−0.919 + 0.393i)39-s + (0.587 − 0.809i)41-s + ⋯ |
| L(s) = 1 | + (−0.0896 + 0.995i)3-s + (−0.222 − 0.974i)7-s + (−0.983 − 0.178i)9-s + (0.178 + 0.983i)11-s + (0.473 + 0.880i)13-s + (−0.951 + 0.309i)17-s + (−0.0896 − 0.995i)19-s + (0.990 − 0.134i)21-s + (−0.0448 + 0.998i)23-s + (0.266 − 0.963i)27-s + (−0.834 − 0.550i)31-s + (−0.995 + 0.0896i)33-s + (0.178 − 0.983i)37-s + (−0.919 + 0.393i)39-s + (0.587 − 0.809i)41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2900 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.120 - 0.992i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2900 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.120 - 0.992i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3655912961 - 0.3238102793i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.3655912961 - 0.3238102793i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7948377165 + 0.1791956235i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7948377165 + 0.1791956235i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 29 | \( 1 \) |
| good | 3 | \( 1 + (-0.0896 + 0.995i)T \) |
| 7 | \( 1 + (-0.222 - 0.974i)T \) |
| 11 | \( 1 + (0.178 + 0.983i)T \) |
| 13 | \( 1 + (0.473 + 0.880i)T \) |
| 17 | \( 1 + (-0.951 + 0.309i)T \) |
| 19 | \( 1 + (-0.0896 - 0.995i)T \) |
| 23 | \( 1 + (-0.0448 + 0.998i)T \) |
| 31 | \( 1 + (-0.834 - 0.550i)T \) |
| 37 | \( 1 + (0.178 - 0.983i)T \) |
| 41 | \( 1 + (0.587 - 0.809i)T \) |
| 43 | \( 1 + (-0.781 - 0.623i)T \) |
| 47 | \( 1 + (-0.722 - 0.691i)T \) |
| 53 | \( 1 + (-0.936 + 0.351i)T \) |
| 59 | \( 1 + (0.809 + 0.587i)T \) |
| 61 | \( 1 + (0.657 - 0.753i)T \) |
| 67 | \( 1 + (0.691 + 0.722i)T \) |
| 71 | \( 1 + (-0.691 + 0.722i)T \) |
| 73 | \( 1 + (0.998 + 0.0448i)T \) |
| 79 | \( 1 + (-0.990 + 0.134i)T \) |
| 83 | \( 1 + (-0.995 + 0.0896i)T \) |
| 89 | \( 1 + (-0.266 + 0.963i)T \) |
| 97 | \( 1 + (0.512 - 0.858i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.1589147847803699629373538316, −18.47014642113235612190232751564, −18.17246712558118137797228073239, −17.36755976799216038859280426539, −16.39008180170140414142671331568, −16.00134093579477606490193882708, −14.906736600332458076417122855632, −14.39699329466845679043544635890, −13.483302158154145926237950138954, −12.87414956967132686514630357965, −12.39661805651760035271794762327, −11.428818582991731819397717599666, −11.08299142875807460827128648238, −10.00720837285197961601376796126, −9.00056125206912498481179755629, −8.35009023620178318968187727120, −7.99059244555643688964778600273, −6.73894768102161311549630422454, −6.22470544698947764065088538929, −5.655638583629812966906337644458, −4.77978302926557401716279017399, −3.40432234632238219795946173027, −2.8700098817240946038839834869, −1.96188081133657245050960457497, −1.04301809632534406015264828597,
0.16084740550486523490277540674, 1.60825192786807033518317999964, 2.521271171202474471212297364934, 3.80142874617475571227205455788, 4.03084501971839879549966615078, 4.833303201420041307927671358214, 5.700889149885873215601743383566, 6.772339071291513131397253199039, 7.14940509326136154476650643783, 8.30950491082619608025626732536, 9.18703946629110135768631904047, 9.59041961604692060657654443122, 10.402789526462801938877395359417, 11.178083382087962447126908516279, 11.50797329398633193811082494451, 12.70871843797477968819852472912, 13.40299334756970828581032113616, 14.1254506920612893381201235667, 14.822999683028062633845244620043, 15.59731325065394903620358684581, 16.06463754726371712495338127256, 16.94013867729939435351004534779, 17.40765996351997545570691841154, 18.01496562388665989590738473332, 19.22255922151150477094339741851