sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(287, base_ring=CyclotomicField(20))
M = H._module
chi = DirichletCharacter(H, M([0,17]))
pari:[g,chi] = znchar(Mod(225,287))
\(\chi_{287}(8,\cdot)\)
\(\chi_{287}(36,\cdot)\)
\(\chi_{287}(43,\cdot)\)
\(\chi_{287}(162,\cdot)\)
\(\chi_{287}(169,\cdot)\)
\(\chi_{287}(197,\cdot)\)
\(\chi_{287}(225,\cdot)\)
\(\chi_{287}(267,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((206,211)\) → \((1,e\left(\frac{17}{20}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(8\) | \(9\) | \(10\) | \(11\) | \(12\) |
| \( \chi_{ 287 }(225, a) \) |
\(1\) | \(1\) | \(e\left(\frac{1}{10}\right)\) | \(-i\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(-1\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{19}{20}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)