# Properties

 Label 287.u Modulus $287$ Conductor $41$ Order $20$ Real no Primitive no Minimal yes Parity even

# Related objects

Show commands: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(287, base_ring=CyclotomicField(20))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([0,19]))

sage: chi.galois_orbit()

pari: [g,chi] = znchar(Mod(8,287))

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Basic properties

 Modulus: $$287$$ Conductor: $$41$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$20$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from 41.g sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Related number fields

 Field of values: $$\Q(\zeta_{20})$$ Fixed field: $$\Q(\zeta_{41})^+$$

## Characters in Galois orbit

Character $$-1$$ $$1$$ $$2$$ $$3$$ $$4$$ $$5$$ $$6$$ $$8$$ $$9$$ $$10$$ $$11$$ $$12$$
$$\chi_{287}(8,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{7}{10}\right)$$ $$i$$ $$e\left(\frac{2}{5}\right)$$ $$e\left(\frac{9}{10}\right)$$ $$e\left(\frac{19}{20}\right)$$ $$e\left(\frac{1}{10}\right)$$ $$-1$$ $$e\left(\frac{3}{5}\right)$$ $$e\left(\frac{17}{20}\right)$$ $$e\left(\frac{13}{20}\right)$$
$$\chi_{287}(36,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{3}{10}\right)$$ $$-i$$ $$e\left(\frac{3}{5}\right)$$ $$e\left(\frac{1}{10}\right)$$ $$e\left(\frac{1}{20}\right)$$ $$e\left(\frac{9}{10}\right)$$ $$-1$$ $$e\left(\frac{2}{5}\right)$$ $$e\left(\frac{3}{20}\right)$$ $$e\left(\frac{7}{20}\right)$$
$$\chi_{287}(43,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{9}{10}\right)$$ $$-i$$ $$e\left(\frac{4}{5}\right)$$ $$e\left(\frac{3}{10}\right)$$ $$e\left(\frac{13}{20}\right)$$ $$e\left(\frac{7}{10}\right)$$ $$-1$$ $$e\left(\frac{1}{5}\right)$$ $$e\left(\frac{19}{20}\right)$$ $$e\left(\frac{11}{20}\right)$$
$$\chi_{287}(162,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{9}{10}\right)$$ $$i$$ $$e\left(\frac{4}{5}\right)$$ $$e\left(\frac{3}{10}\right)$$ $$e\left(\frac{3}{20}\right)$$ $$e\left(\frac{7}{10}\right)$$ $$-1$$ $$e\left(\frac{1}{5}\right)$$ $$e\left(\frac{9}{20}\right)$$ $$e\left(\frac{1}{20}\right)$$
$$\chi_{287}(169,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{3}{10}\right)$$ $$i$$ $$e\left(\frac{3}{5}\right)$$ $$e\left(\frac{1}{10}\right)$$ $$e\left(\frac{11}{20}\right)$$ $$e\left(\frac{9}{10}\right)$$ $$-1$$ $$e\left(\frac{2}{5}\right)$$ $$e\left(\frac{13}{20}\right)$$ $$e\left(\frac{17}{20}\right)$$
$$\chi_{287}(197,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{7}{10}\right)$$ $$-i$$ $$e\left(\frac{2}{5}\right)$$ $$e\left(\frac{9}{10}\right)$$ $$e\left(\frac{9}{20}\right)$$ $$e\left(\frac{1}{10}\right)$$ $$-1$$ $$e\left(\frac{3}{5}\right)$$ $$e\left(\frac{7}{20}\right)$$ $$e\left(\frac{3}{20}\right)$$
$$\chi_{287}(225,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{1}{10}\right)$$ $$-i$$ $$e\left(\frac{1}{5}\right)$$ $$e\left(\frac{7}{10}\right)$$ $$e\left(\frac{17}{20}\right)$$ $$e\left(\frac{3}{10}\right)$$ $$-1$$ $$e\left(\frac{4}{5}\right)$$ $$e\left(\frac{11}{20}\right)$$ $$e\left(\frac{19}{20}\right)$$
$$\chi_{287}(267,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{1}{10}\right)$$ $$i$$ $$e\left(\frac{1}{5}\right)$$ $$e\left(\frac{7}{10}\right)$$ $$e\left(\frac{7}{20}\right)$$ $$e\left(\frac{3}{10}\right)$$ $$-1$$ $$e\left(\frac{4}{5}\right)$$ $$e\left(\frac{1}{20}\right)$$ $$e\left(\frac{9}{20}\right)$$