Properties

Label 28665.wh
Modulus $28665$
Conductor $5733$
Order $21$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(28665, base_ring=CyclotomicField(42)) M = H._module chi = DirichletCharacter(H, M([28,0,2,28])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(646,28665)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(28665\)
Conductor: \(5733\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(21\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 5733.gu
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{21})\)
Fixed field: Number field defined by a degree 21 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(8\) \(11\) \(16\) \(17\) \(19\) \(22\) \(23\) \(29\)
\(\chi_{28665}(646,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{11}{21}\right)\) \(1\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{4}{21}\right)\)
\(\chi_{28665}(3721,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{16}{21}\right)\) \(1\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{2}{21}\right)\)
\(\chi_{28665}(4741,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{8}{21}\right)\) \(1\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{1}{21}\right)\)
\(\chi_{28665}(7816,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{4}{21}\right)\) \(1\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{11}{21}\right)\)
\(\chi_{28665}(8836,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{5}{21}\right)\) \(1\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{19}{21}\right)\)
\(\chi_{28665}(11911,\cdot)\) \(1\) \(1\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{13}{21}\right)\) \(1\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{20}{21}\right)\)
\(\chi_{28665}(12931,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{2}{21}\right)\) \(1\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{16}{21}\right)\)
\(\chi_{28665}(16006,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{1}{21}\right)\) \(1\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{8}{21}\right)\)
\(\chi_{28665}(17026,\cdot)\) \(1\) \(1\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{20}{21}\right)\) \(1\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{13}{21}\right)\)
\(\chi_{28665}(20101,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{10}{21}\right)\) \(1\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{17}{21}\right)\)
\(\chi_{28665}(21121,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{17}{21}\right)\) \(1\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{10}{21}\right)\)
\(\chi_{28665}(24196,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{19}{21}\right)\) \(1\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{5}{21}\right)\)