Properties

Label 28665.bqj
Modulus $28665$
Conductor $28665$
Order $84$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(28665, base_ring=CyclotomicField(84)) M = H._module chi = DirichletCharacter(H, M([28,21,16,35])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(877,28665)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(28665\)
Conductor: \(28665\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(84\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{84})$
Fixed field: Number field defined by a degree 84 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(8\) \(11\) \(16\) \(17\) \(19\) \(22\) \(23\) \(29\)
\(\chi_{28665}(877,\cdot)\) \(1\) \(1\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{73}{84}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{71}{84}\right)\) \(i\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{13}{14}\right)\)
\(\chi_{28665}(2797,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{65}{84}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{31}{84}\right)\) \(i\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{11}{14}\right)\)
\(\chi_{28665}(2893,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{43}{84}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{5}{84}\right)\) \(-i\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{9}{14}\right)\)
\(\chi_{28665}(2923,\cdot)\) \(1\) \(1\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{47}{84}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{25}{84}\right)\) \(-i\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{3}{14}\right)\)
\(\chi_{28665}(4972,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{37}{84}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{59}{84}\right)\) \(i\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{11}{14}\right)\)
\(\chi_{28665}(6892,\cdot)\) \(1\) \(1\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{5}{84}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{67}{84}\right)\) \(i\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{3}{14}\right)\)
\(\chi_{28665}(7018,\cdot)\) \(1\) \(1\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{71}{84}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{61}{84}\right)\) \(-i\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{9}{14}\right)\)
\(\chi_{28665}(9067,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{1}{84}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{47}{84}\right)\) \(i\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{9}{14}\right)\)
\(\chi_{28665}(10987,\cdot)\) \(1\) \(1\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{29}{84}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{19}{84}\right)\) \(i\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{9}{14}\right)\)
\(\chi_{28665}(11083,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{55}{84}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{65}{84}\right)\) \(-i\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{5}{14}\right)\)
\(\chi_{28665}(11113,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{11}{84}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{13}{84}\right)\) \(-i\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{1}{14}\right)\)
\(\chi_{28665}(15082,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{53}{84}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{55}{84}\right)\) \(i\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{1}{14}\right)\)
\(\chi_{28665}(15178,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{19}{84}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{53}{84}\right)\) \(-i\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{3}{14}\right)\)
\(\chi_{28665}(17257,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{13}{84}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{23}{84}\right)\) \(i\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{5}{14}\right)\)
\(\chi_{28665}(19273,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{67}{84}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{41}{84}\right)\) \(-i\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{1}{14}\right)\)
\(\chi_{28665}(19303,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{59}{84}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{1}{84}\right)\) \(-i\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{13}{14}\right)\)
\(\chi_{28665}(21352,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{61}{84}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{11}{84}\right)\) \(i\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{3}{14}\right)\)
\(\chi_{28665}(23272,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{17}{84}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{43}{84}\right)\) \(i\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{13}{14}\right)\)
\(\chi_{28665}(23368,\cdot)\) \(1\) \(1\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{31}{84}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{29}{84}\right)\) \(-i\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{13}{14}\right)\)
\(\chi_{28665}(23398,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{83}{84}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{37}{84}\right)\) \(-i\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{5}{14}\right)\)
\(\chi_{28665}(25447,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{25}{84}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{83}{84}\right)\) \(i\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{1}{14}\right)\)
\(\chi_{28665}(27367,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{41}{84}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{79}{84}\right)\) \(i\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{5}{14}\right)\)
\(\chi_{28665}(27463,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{79}{84}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{17}{84}\right)\) \(-i\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{11}{14}\right)\)
\(\chi_{28665}(27493,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{23}{84}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{73}{84}\right)\) \(-i\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{11}{14}\right)\)