sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(28665, base_ring=CyclotomicField(84))
M = H._module
chi = DirichletCharacter(H, M([28,63,64,77]))
pari:[g,chi] = znchar(Mod(15178,28665))
| Modulus: | \(28665\) | |
| Conductor: | \(28665\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(84\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{28665}(877,\cdot)\)
\(\chi_{28665}(2797,\cdot)\)
\(\chi_{28665}(2893,\cdot)\)
\(\chi_{28665}(2923,\cdot)\)
\(\chi_{28665}(4972,\cdot)\)
\(\chi_{28665}(6892,\cdot)\)
\(\chi_{28665}(7018,\cdot)\)
\(\chi_{28665}(9067,\cdot)\)
\(\chi_{28665}(10987,\cdot)\)
\(\chi_{28665}(11083,\cdot)\)
\(\chi_{28665}(11113,\cdot)\)
\(\chi_{28665}(15082,\cdot)\)
\(\chi_{28665}(15178,\cdot)\)
\(\chi_{28665}(17257,\cdot)\)
\(\chi_{28665}(19273,\cdot)\)
\(\chi_{28665}(19303,\cdot)\)
\(\chi_{28665}(21352,\cdot)\)
\(\chi_{28665}(23272,\cdot)\)
\(\chi_{28665}(23368,\cdot)\)
\(\chi_{28665}(23398,\cdot)\)
\(\chi_{28665}(25447,\cdot)\)
\(\chi_{28665}(27367,\cdot)\)
\(\chi_{28665}(27463,\cdot)\)
\(\chi_{28665}(27493,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((25481,11467,18721,11026)\) → \((e\left(\frac{1}{3}\right),-i,e\left(\frac{16}{21}\right),e\left(\frac{11}{12}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(8\) | \(11\) | \(16\) | \(17\) | \(19\) | \(22\) | \(23\) | \(29\) |
| \( \chi_{ 28665 }(15178, a) \) |
\(1\) | \(1\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{13}{21}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{19}{84}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{53}{84}\right)\) | \(-i\) | \(e\left(\frac{1}{28}\right)\) | \(e\left(\frac{1}{28}\right)\) | \(e\left(\frac{3}{14}\right)\) |
sage:chi.jacobi_sum(n)