sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(28665, base_ring=CyclotomicField(84))
M = H._module
chi = DirichletCharacter(H, M([56,21,22,70]))
         
     
    
    
        
        pari:[g,chi] = znchar(Mod(22552,28665))
         
     
    
  
   | Modulus: |  \(28665\) |   |  
   | Conductor: |  \(28665\) |  
    
         
        sage:chi.conductor()
          
     
    
    
         
        pari:znconreyconductor(g,chi)
          
     
    
 |  
   | Order: |  \(84\) |  
    
         
        sage:chi.multiplicative_order()
          
     
    
    
         
        pari:charorder(g,chi)
          
     
    
 |  
   | Real: |   no  |  
   | Primitive: |   yes |   
    
         
        sage:chi.is_primitive()
          
     
    
    
         
        pari:#znconreyconductor(g,chi)==1
          
     
    
 |  
     | Minimal:  |  yes |  
       | Parity:  |  even |  
    
         
        sage:chi.is_odd()
          
     
    
    
         
        pari:zncharisodd(g,chi)
          
     
    
 |  
   
  \(\chi_{28665}(1258,\cdot)\)
  \(\chi_{28665}(3748,\cdot)\)
  \(\chi_{28665}(4567,\cdot)\)
  \(\chi_{28665}(5353,\cdot)\)
  \(\chi_{28665}(6172,\cdot)\)
  \(\chi_{28665}(7843,\cdot)\)
  \(\chi_{28665}(8662,\cdot)\)
  \(\chi_{28665}(9448,\cdot)\)
  \(\chi_{28665}(10267,\cdot)\)
  \(\chi_{28665}(12757,\cdot)\)
  \(\chi_{28665}(14362,\cdot)\)
  \(\chi_{28665}(16033,\cdot)\)
  \(\chi_{28665}(16852,\cdot)\)
  \(\chi_{28665}(17638,\cdot)\)
  \(\chi_{28665}(18457,\cdot)\)
  \(\chi_{28665}(20128,\cdot)\)
  \(\chi_{28665}(20947,\cdot)\)
  \(\chi_{28665}(21733,\cdot)\)
  \(\chi_{28665}(22552,\cdot)\)
  \(\chi_{28665}(24223,\cdot)\)
  \(\chi_{28665}(25042,\cdot)\)
  \(\chi_{28665}(25828,\cdot)\)
  \(\chi_{28665}(26647,\cdot)\)
  \(\chi_{28665}(28318,\cdot)\)
    
        
        sage:chi.galois_orbit()
         
     
    
    
        
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((25481,11467,18721,11026)\) → \((e\left(\frac{2}{3}\right),i,e\left(\frac{11}{42}\right),e\left(\frac{5}{6}\right))\)
  
    
      
        | \(a\) | 
        \(-1\) | \(1\) | \(2\) | \(4\) | \(8\) | \(11\) | \(16\) | \(17\) | \(19\) | \(22\) | \(23\) | \(29\) |       
    
    
      | \( \chi_{ 28665 }(22552, a) \) | 
      \(1\) | \(1\) | \(e\left(\frac{47}{84}\right)\) | \(e\left(\frac{5}{42}\right)\) | \(e\left(\frac{19}{28}\right)\) | \(e\left(\frac{41}{42}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{13}{28}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{15}{28}\right)\) | \(e\left(\frac{31}{84}\right)\) | \(e\left(\frac{3}{14}\right)\) |     
  
 
    
        
        sage:chi.jacobi_sum(n)