sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(28665, base_ring=CyclotomicField(84))
M = H._module
chi = DirichletCharacter(H, M([56,63,34,70]))
pari:[g,chi] = znchar(Mod(21733,28665))
| Modulus: | \(28665\) | |
| Conductor: | \(28665\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(84\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{28665}(1258,\cdot)\)
\(\chi_{28665}(3748,\cdot)\)
\(\chi_{28665}(4567,\cdot)\)
\(\chi_{28665}(5353,\cdot)\)
\(\chi_{28665}(6172,\cdot)\)
\(\chi_{28665}(7843,\cdot)\)
\(\chi_{28665}(8662,\cdot)\)
\(\chi_{28665}(9448,\cdot)\)
\(\chi_{28665}(10267,\cdot)\)
\(\chi_{28665}(12757,\cdot)\)
\(\chi_{28665}(14362,\cdot)\)
\(\chi_{28665}(16033,\cdot)\)
\(\chi_{28665}(16852,\cdot)\)
\(\chi_{28665}(17638,\cdot)\)
\(\chi_{28665}(18457,\cdot)\)
\(\chi_{28665}(20128,\cdot)\)
\(\chi_{28665}(20947,\cdot)\)
\(\chi_{28665}(21733,\cdot)\)
\(\chi_{28665}(22552,\cdot)\)
\(\chi_{28665}(24223,\cdot)\)
\(\chi_{28665}(25042,\cdot)\)
\(\chi_{28665}(25828,\cdot)\)
\(\chi_{28665}(26647,\cdot)\)
\(\chi_{28665}(28318,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((25481,11467,18721,11026)\) → \((e\left(\frac{2}{3}\right),-i,e\left(\frac{17}{42}\right),e\left(\frac{5}{6}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(8\) | \(11\) | \(16\) | \(17\) | \(19\) | \(22\) | \(23\) | \(29\) |
| \( \chi_{ 28665 }(21733, a) \) |
\(1\) | \(1\) | \(e\left(\frac{65}{84}\right)\) | \(e\left(\frac{23}{42}\right)\) | \(e\left(\frac{9}{28}\right)\) | \(e\left(\frac{29}{42}\right)\) | \(e\left(\frac{2}{21}\right)\) | \(e\left(\frac{15}{28}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{13}{28}\right)\) | \(e\left(\frac{25}{84}\right)\) | \(e\left(\frac{11}{14}\right)\) |
sage:chi.jacobi_sum(n)