sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(28665, base_ring=CyclotomicField(84))
M = H._module
chi = DirichletCharacter(H, M([28,21,72,35]))
pari:[g,chi] = znchar(Mod(7897,28665))
| Modulus: | \(28665\) | |
| Conductor: | \(28665\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(84\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{28665}(1723,\cdot)\)
\(\chi_{28665}(3508,\cdot)\)
\(\chi_{28665}(3802,\cdot)\)
\(\chi_{28665}(5818,\cdot)\)
\(\chi_{28665}(7477,\cdot)\)
\(\chi_{28665}(7603,\cdot)\)
\(\chi_{28665}(7897,\cdot)\)
\(\chi_{28665}(9913,\cdot)\)
\(\chi_{28665}(11572,\cdot)\)
\(\chi_{28665}(11698,\cdot)\)
\(\chi_{28665}(11992,\cdot)\)
\(\chi_{28665}(14008,\cdot)\)
\(\chi_{28665}(15667,\cdot)\)
\(\chi_{28665}(15793,\cdot)\)
\(\chi_{28665}(16087,\cdot)\)
\(\chi_{28665}(18103,\cdot)\)
\(\chi_{28665}(19762,\cdot)\)
\(\chi_{28665}(19888,\cdot)\)
\(\chi_{28665}(20182,\cdot)\)
\(\chi_{28665}(23857,\cdot)\)
\(\chi_{28665}(23983,\cdot)\)
\(\chi_{28665}(24277,\cdot)\)
\(\chi_{28665}(26293,\cdot)\)
\(\chi_{28665}(27952,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((25481,11467,18721,11026)\) → \((e\left(\frac{1}{3}\right),i,e\left(\frac{6}{7}\right),e\left(\frac{5}{12}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(8\) | \(11\) | \(16\) | \(17\) | \(19\) | \(22\) | \(23\) | \(29\) |
| \( \chi_{ 28665 }(7897, a) \) |
\(1\) | \(1\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{15}{28}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{43}{84}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{23}{28}\right)\) | \(e\left(\frac{13}{84}\right)\) | \(e\left(\frac{13}{14}\right)\) |
sage:chi.jacobi_sum(n)