sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(28665, base_ring=CyclotomicField(84))
M = H._module
chi = DirichletCharacter(H, M([56,63,12,49]))
         
     
    
    
        
        pari:[g,chi] = znchar(Mod(19888,28665))
         
     
    
  
   | Modulus: |  \(28665\) |   |  
   | Conductor: |  \(28665\) |  
    
         
        sage:chi.conductor()
          
     
    
    
         
        pari:znconreyconductor(g,chi)
          
     
    
 |  
   | Order: |  \(84\) |  
    
         
        sage:chi.multiplicative_order()
          
     
    
    
         
        pari:charorder(g,chi)
          
     
    
 |  
   | Real: |   no  |  
   | Primitive: |   yes |   
    
         
        sage:chi.is_primitive()
          
     
    
    
         
        pari:#znconreyconductor(g,chi)==1
          
     
    
 |  
     | Minimal:  |  yes |  
       | Parity:  |  even |  
    
         
        sage:chi.is_odd()
          
     
    
    
         
        pari:zncharisodd(g,chi)
          
     
    
 |  
   
  \(\chi_{28665}(1723,\cdot)\)
  \(\chi_{28665}(3508,\cdot)\)
  \(\chi_{28665}(3802,\cdot)\)
  \(\chi_{28665}(5818,\cdot)\)
  \(\chi_{28665}(7477,\cdot)\)
  \(\chi_{28665}(7603,\cdot)\)
  \(\chi_{28665}(7897,\cdot)\)
  \(\chi_{28665}(9913,\cdot)\)
  \(\chi_{28665}(11572,\cdot)\)
  \(\chi_{28665}(11698,\cdot)\)
  \(\chi_{28665}(11992,\cdot)\)
  \(\chi_{28665}(14008,\cdot)\)
  \(\chi_{28665}(15667,\cdot)\)
  \(\chi_{28665}(15793,\cdot)\)
  \(\chi_{28665}(16087,\cdot)\)
  \(\chi_{28665}(18103,\cdot)\)
  \(\chi_{28665}(19762,\cdot)\)
  \(\chi_{28665}(19888,\cdot)\)
  \(\chi_{28665}(20182,\cdot)\)
  \(\chi_{28665}(23857,\cdot)\)
  \(\chi_{28665}(23983,\cdot)\)
  \(\chi_{28665}(24277,\cdot)\)
  \(\chi_{28665}(26293,\cdot)\)
  \(\chi_{28665}(27952,\cdot)\)
    
        
        sage:chi.galois_orbit()
         
     
    
    
        
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((25481,11467,18721,11026)\) → \((e\left(\frac{2}{3}\right),-i,e\left(\frac{1}{7}\right),e\left(\frac{7}{12}\right))\)
  
    
      
        | \(a\) | 
        \(-1\) | \(1\) | \(2\) | \(4\) | \(8\) | \(11\) | \(16\) | \(17\) | \(19\) | \(22\) | \(23\) | \(29\) |       
    
    
      | \( \chi_{ 28665 }(19888, a) \) | 
      \(1\) | \(1\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{13}{28}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{41}{84}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{28}\right)\) | \(e\left(\frac{71}{84}\right)\) | \(e\left(\frac{1}{14}\right)\) |     
  
 
    
        
        sage:chi.jacobi_sum(n)