Properties

Label 28665.7849
Modulus $28665$
Conductor $3185$
Order $42$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(28665, base_ring=CyclotomicField(42)) M = H._module chi = DirichletCharacter(H, M([0,21,2,35]))
 
Copy content pari:[g,chi] = znchar(Mod(7849,28665))
 

Basic properties

Modulus: \(28665\)
Conductor: \(3185\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(42\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{3185}(1479,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 28665.yd

\(\chi_{28665}(1369,\cdot)\) \(\chi_{28665}(5464,\cdot)\) \(\chi_{28665}(7849,\cdot)\) \(\chi_{28665}(9559,\cdot)\) \(\chi_{28665}(11944,\cdot)\) \(\chi_{28665}(13654,\cdot)\) \(\chi_{28665}(16039,\cdot)\) \(\chi_{28665}(17749,\cdot)\) \(\chi_{28665}(20134,\cdot)\) \(\chi_{28665}(21844,\cdot)\) \(\chi_{28665}(24229,\cdot)\) \(\chi_{28665}(28324,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{21})\)
Fixed field: Number field defined by a degree 42 polynomial

Values on generators

\((25481,11467,18721,11026)\) → \((1,-1,e\left(\frac{1}{21}\right),e\left(\frac{5}{6}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(8\)\(11\)\(16\)\(17\)\(19\)\(22\)\(23\)\(29\)
\( \chi_{ 28665 }(7849, a) \) \(1\)\(1\)\(e\left(\frac{4}{7}\right)\)\(e\left(\frac{1}{7}\right)\)\(e\left(\frac{5}{7}\right)\)\(e\left(\frac{31}{42}\right)\)\(e\left(\frac{2}{7}\right)\)\(e\left(\frac{5}{14}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{13}{42}\right)\)\(e\left(\frac{9}{14}\right)\)\(e\left(\frac{4}{21}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 28665 }(7849,a) \;\) at \(\;a = \) e.g. 2