![Copy content]() sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2864, base_ring=CyclotomicField(356))
M = H._module
chi = DirichletCharacter(H, M([0,267,342]))
        sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2864, base_ring=CyclotomicField(356))
M = H._module
chi = DirichletCharacter(H, M([0,267,342]))
         
     
    
    
        ![Copy content]() pari:[g,chi] = znchar(Mod(365,2864))
        pari:[g,chi] = znchar(Mod(365,2864))
         
     
    
  
   | Modulus: | \(2864\) |  | 
   | Conductor: | \(2864\) | 
        ![Copy content]() sage:chi.conductor()   
        ![Copy content]() pari:znconreyconductor(g,chi)   | 
   | Order: | \(356\) | 
        ![Copy content]() sage:chi.multiplicative_order()   
        ![Copy content]() pari:charorder(g,chi)   | 
   | Real: | no | 
   | Primitive: | yes | 
        ![Copy content]() sage:chi.is_primitive()   
        ![Copy content]() pari:#znconreyconductor(g,chi)==1   | 
     | Minimal: | yes | 
       | Parity: | odd | 
        ![Copy content]() sage:chi.is_odd()   
        ![Copy content]() pari:zncharisodd(g,chi)   | 
   
  \(\chi_{2864}(21,\cdot)\)
  \(\chi_{2864}(37,\cdot)\)
  \(\chi_{2864}(53,\cdot)\)
  \(\chi_{2864}(69,\cdot)\)
  \(\chi_{2864}(109,\cdot)\)
  \(\chi_{2864}(133,\cdot)\)
  \(\chi_{2864}(157,\cdot)\)
  \(\chi_{2864}(165,\cdot)\)
  \(\chi_{2864}(181,\cdot)\)
  \(\chi_{2864}(189,\cdot)\)
  \(\chi_{2864}(197,\cdot)\)
  \(\chi_{2864}(205,\cdot)\)
  \(\chi_{2864}(213,\cdot)\)
  \(\chi_{2864}(229,\cdot)\)
  \(\chi_{2864}(237,\cdot)\)
  \(\chi_{2864}(269,\cdot)\)
  \(\chi_{2864}(277,\cdot)\)
  \(\chi_{2864}(293,\cdot)\)
  \(\chi_{2864}(301,\cdot)\)
  \(\chi_{2864}(309,\cdot)\)
  \(\chi_{2864}(333,\cdot)\)
  \(\chi_{2864}(341,\cdot)\)
  \(\chi_{2864}(349,\cdot)\)
  \(\chi_{2864}(365,\cdot)\)
  \(\chi_{2864}(381,\cdot)\)
  \(\chi_{2864}(413,\cdot)\)
  \(\chi_{2864}(421,\cdot)\)
  \(\chi_{2864}(429,\cdot)\)
  \(\chi_{2864}(437,\cdot)\)
  \(\chi_{2864}(461,\cdot)\)
 ... 
    
        ![Copy content]() sage:chi.galois_orbit()
        sage:chi.galois_orbit()
         
     
    
    
        ![Copy content]() pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((1791,2149,897)\) → \((1,-i,e\left(\frac{171}{178}\right))\)
  
    
      
        | \(a\) | \(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) | 
    
    
      | \( \chi_{ 2864 }(365, a) \) | \(-1\) | \(1\) | \(e\left(\frac{1}{356}\right)\) | \(e\left(\frac{115}{356}\right)\) | \(e\left(\frac{69}{89}\right)\) | \(e\left(\frac{1}{178}\right)\) | \(e\left(\frac{57}{356}\right)\) | \(e\left(\frac{273}{356}\right)\) | \(e\left(\frac{29}{89}\right)\) | \(e\left(\frac{42}{89}\right)\) | \(e\left(\frac{45}{356}\right)\) | \(e\left(\frac{277}{356}\right)\) | 
  
 
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)