Properties

Label 2864.181
Modulus $2864$
Conductor $2864$
Order $356$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2864, base_ring=CyclotomicField(356)) M = H._module chi = DirichletCharacter(H, M([0,89,2]))
 
Copy content pari:[g,chi] = znchar(Mod(181,2864))
 

Basic properties

Modulus: \(2864\)
Conductor: \(2864\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(356\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2864.u

\(\chi_{2864}(21,\cdot)\) \(\chi_{2864}(37,\cdot)\) \(\chi_{2864}(53,\cdot)\) \(\chi_{2864}(69,\cdot)\) \(\chi_{2864}(109,\cdot)\) \(\chi_{2864}(133,\cdot)\) \(\chi_{2864}(157,\cdot)\) \(\chi_{2864}(165,\cdot)\) \(\chi_{2864}(181,\cdot)\) \(\chi_{2864}(189,\cdot)\) \(\chi_{2864}(197,\cdot)\) \(\chi_{2864}(205,\cdot)\) \(\chi_{2864}(213,\cdot)\) \(\chi_{2864}(229,\cdot)\) \(\chi_{2864}(237,\cdot)\) \(\chi_{2864}(269,\cdot)\) \(\chi_{2864}(277,\cdot)\) \(\chi_{2864}(293,\cdot)\) \(\chi_{2864}(301,\cdot)\) \(\chi_{2864}(309,\cdot)\) \(\chi_{2864}(333,\cdot)\) \(\chi_{2864}(341,\cdot)\) \(\chi_{2864}(349,\cdot)\) \(\chi_{2864}(365,\cdot)\) \(\chi_{2864}(381,\cdot)\) \(\chi_{2864}(413,\cdot)\) \(\chi_{2864}(421,\cdot)\) \(\chi_{2864}(429,\cdot)\) \(\chi_{2864}(437,\cdot)\) \(\chi_{2864}(461,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{356})$
Fixed field: Number field defined by a degree 356 polynomial (not computed)

Values on generators

\((1791,2149,897)\) → \((1,i,e\left(\frac{1}{178}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(21\)
\( \chi_{ 2864 }(181, a) \) \(-1\)\(1\)\(e\left(\frac{127}{356}\right)\)\(e\left(\frac{9}{356}\right)\)\(e\left(\frac{41}{89}\right)\)\(e\left(\frac{127}{178}\right)\)\(e\left(\frac{119}{356}\right)\)\(e\left(\frac{139}{356}\right)\)\(e\left(\frac{34}{89}\right)\)\(e\left(\frac{83}{89}\right)\)\(e\left(\frac{19}{356}\right)\)\(e\left(\frac{291}{356}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2864 }(181,a) \;\) at \(\;a = \) e.g. 2