Properties

Label 2864.607
Modulus $2864$
Conductor $716$
Order $178$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2864, base_ring=CyclotomicField(178)) M = H._module chi = DirichletCharacter(H, M([89,0,132]))
 
Copy content pari:[g,chi] = znchar(Mod(607,2864))
 

Basic properties

Modulus: \(2864\)
Conductor: \(716\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(178\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{716}(607,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2864.r

\(\chi_{2864}(15,\cdot)\) \(\chi_{2864}(31,\cdot)\) \(\chi_{2864}(47,\cdot)\) \(\chi_{2864}(95,\cdot)\) \(\chi_{2864}(191,\cdot)\) \(\chi_{2864}(239,\cdot)\) \(\chi_{2864}(255,\cdot)\) \(\chi_{2864}(287,\cdot)\) \(\chi_{2864}(303,\cdot)\) \(\chi_{2864}(335,\cdot)\) \(\chi_{2864}(351,\cdot)\) \(\chi_{2864}(367,\cdot)\) \(\chi_{2864}(383,\cdot)\) \(\chi_{2864}(415,\cdot)\) \(\chi_{2864}(447,\cdot)\) \(\chi_{2864}(479,\cdot)\) \(\chi_{2864}(511,\cdot)\) \(\chi_{2864}(527,\cdot)\) \(\chi_{2864}(559,\cdot)\) \(\chi_{2864}(607,\cdot)\) \(\chi_{2864}(719,\cdot)\) \(\chi_{2864}(735,\cdot)\) \(\chi_{2864}(767,\cdot)\) \(\chi_{2864}(783,\cdot)\) \(\chi_{2864}(799,\cdot)\) \(\chi_{2864}(863,\cdot)\) \(\chi_{2864}(911,\cdot)\) \(\chi_{2864}(943,\cdot)\) \(\chi_{2864}(959,\cdot)\) \(\chi_{2864}(975,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{89})$
Fixed field: Number field defined by a degree 178 polynomial (not computed)

Values on generators

\((1791,2149,897)\) → \((-1,1,e\left(\frac{66}{89}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(21\)
\( \chi_{ 2864 }(607, a) \) \(-1\)\(1\)\(e\left(\frac{105}{178}\right)\)\(e\left(\frac{30}{89}\right)\)\(e\left(\frac{55}{178}\right)\)\(e\left(\frac{16}{89}\right)\)\(e\left(\frac{111}{178}\right)\)\(e\left(\frac{48}{89}\right)\)\(e\left(\frac{165}{178}\right)\)\(e\left(\frac{9}{89}\right)\)\(e\left(\frac{97}{178}\right)\)\(e\left(\frac{80}{89}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2864 }(607,a) \;\) at \(\;a = \) e.g. 2