Properties

Label 716.607
Modulus $716$
Conductor $716$
Order $178$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(716, base_ring=CyclotomicField(178)) M = H._module chi = DirichletCharacter(H, M([89,132]))
 
Copy content pari:[g,chi] = znchar(Mod(607,716))
 

Basic properties

Modulus: \(716\)
Conductor: \(716\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(178\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 716.h

\(\chi_{716}(3,\cdot)\) \(\chi_{716}(15,\cdot)\) \(\chi_{716}(19,\cdot)\) \(\chi_{716}(27,\cdot)\) \(\chi_{716}(31,\cdot)\) \(\chi_{716}(39,\cdot)\) \(\chi_{716}(43,\cdot)\) \(\chi_{716}(47,\cdot)\) \(\chi_{716}(51,\cdot)\) \(\chi_{716}(59,\cdot)\) \(\chi_{716}(67,\cdot)\) \(\chi_{716}(75,\cdot)\) \(\chi_{716}(83,\cdot)\) \(\chi_{716}(87,\cdot)\) \(\chi_{716}(95,\cdot)\) \(\chi_{716}(107,\cdot)\) \(\chi_{716}(135,\cdot)\) \(\chi_{716}(139,\cdot)\) \(\chi_{716}(147,\cdot)\) \(\chi_{716}(151,\cdot)\) \(\chi_{716}(155,\cdot)\) \(\chi_{716}(171,\cdot)\) \(\chi_{716}(183,\cdot)\) \(\chi_{716}(191,\cdot)\) \(\chi_{716}(195,\cdot)\) \(\chi_{716}(199,\cdot)\) \(\chi_{716}(215,\cdot)\) \(\chi_{716}(227,\cdot)\) \(\chi_{716}(231,\cdot)\) \(\chi_{716}(235,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{89})$
Fixed field: Number field defined by a degree 178 polynomial (not computed)

Values on generators

\((359,181)\) → \((-1,e\left(\frac{66}{89}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(21\)
\( \chi_{ 716 }(607, a) \) \(-1\)\(1\)\(e\left(\frac{105}{178}\right)\)\(e\left(\frac{30}{89}\right)\)\(e\left(\frac{55}{178}\right)\)\(e\left(\frac{16}{89}\right)\)\(e\left(\frac{111}{178}\right)\)\(e\left(\frac{48}{89}\right)\)\(e\left(\frac{165}{178}\right)\)\(e\left(\frac{9}{89}\right)\)\(e\left(\frac{97}{178}\right)\)\(e\left(\frac{80}{89}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 716 }(607,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 716 }(607,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 716 }(607,·),\chi_{ 716 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 716 }(607,·)) \;\) at \(\; a,b = \) e.g. 1,2