![Copy content]() sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(716, base_ring=CyclotomicField(178))
M = H._module
chi = DirichletCharacter(H, M([89,132]))
        sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(716, base_ring=CyclotomicField(178))
M = H._module
chi = DirichletCharacter(H, M([89,132]))
         
     
    
    
        ![Copy content]() pari:[g,chi] = znchar(Mod(607,716))
        pari:[g,chi] = znchar(Mod(607,716))
         
     
    
  
   | Modulus: | \(716\) |  | 
   | Conductor: | \(716\) | 
        ![Copy content]() sage:chi.conductor()   
        ![Copy content]() pari:znconreyconductor(g,chi)   | 
   | Order: | \(178\) | 
        ![Copy content]() sage:chi.multiplicative_order()   
        ![Copy content]() pari:charorder(g,chi)   | 
   | Real: | no | 
   | Primitive: | yes | 
        ![Copy content]() sage:chi.is_primitive()   
        ![Copy content]() pari:#znconreyconductor(g,chi)==1   | 
     | Minimal: | yes | 
       | Parity: | odd | 
        ![Copy content]() sage:chi.is_odd()   
        ![Copy content]() pari:zncharisodd(g,chi)   | 
   
  \(\chi_{716}(3,\cdot)\)
  \(\chi_{716}(15,\cdot)\)
  \(\chi_{716}(19,\cdot)\)
  \(\chi_{716}(27,\cdot)\)
  \(\chi_{716}(31,\cdot)\)
  \(\chi_{716}(39,\cdot)\)
  \(\chi_{716}(43,\cdot)\)
  \(\chi_{716}(47,\cdot)\)
  \(\chi_{716}(51,\cdot)\)
  \(\chi_{716}(59,\cdot)\)
  \(\chi_{716}(67,\cdot)\)
  \(\chi_{716}(75,\cdot)\)
  \(\chi_{716}(83,\cdot)\)
  \(\chi_{716}(87,\cdot)\)
  \(\chi_{716}(95,\cdot)\)
  \(\chi_{716}(107,\cdot)\)
  \(\chi_{716}(135,\cdot)\)
  \(\chi_{716}(139,\cdot)\)
  \(\chi_{716}(147,\cdot)\)
  \(\chi_{716}(151,\cdot)\)
  \(\chi_{716}(155,\cdot)\)
  \(\chi_{716}(171,\cdot)\)
  \(\chi_{716}(183,\cdot)\)
  \(\chi_{716}(191,\cdot)\)
  \(\chi_{716}(195,\cdot)\)
  \(\chi_{716}(199,\cdot)\)
  \(\chi_{716}(215,\cdot)\)
  \(\chi_{716}(227,\cdot)\)
  \(\chi_{716}(231,\cdot)\)
  \(\chi_{716}(235,\cdot)\)
 ... 
    
        ![Copy content]() sage:chi.galois_orbit()
        sage:chi.galois_orbit()
         
     
    
    
        ![Copy content]() pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((359,181)\) → \((-1,e\left(\frac{66}{89}\right))\)
  
    
      
        | \(a\) | \(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) | 
    
    
      | \( \chi_{ 716 }(607, a) \) | \(-1\) | \(1\) | \(e\left(\frac{105}{178}\right)\) | \(e\left(\frac{30}{89}\right)\) | \(e\left(\frac{55}{178}\right)\) | \(e\left(\frac{16}{89}\right)\) | \(e\left(\frac{111}{178}\right)\) | \(e\left(\frac{48}{89}\right)\) | \(e\left(\frac{165}{178}\right)\) | \(e\left(\frac{9}{89}\right)\) | \(e\left(\frac{97}{178}\right)\) | \(e\left(\frac{80}{89}\right)\) | 
  
 
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)
         
     
    
    
        ![Copy content]() sage:chi.gauss_sum(a)
        sage:chi.gauss_sum(a)
         
     
    
    
        ![Copy content]() pari:znchargauss(g,chi,a)
        pari:znchargauss(g,chi,a)
         
     
    
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)
         
     
    
    
        ![Copy content]() sage:chi.kloosterman_sum(a,b)
        sage:chi.kloosterman_sum(a,b)