Properties

Label 2856.2531
Modulus $2856$
Conductor $2856$
Order $24$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2856, base_ring=CyclotomicField(24)) M = H._module chi = DirichletCharacter(H, M([12,12,12,16,9]))
 
Copy content pari:[g,chi] = znchar(Mod(2531,2856))
 

Basic properties

Modulus: \(2856\)
Conductor: \(2856\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(24\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2856.fm

\(\chi_{2856}(179,\cdot)\) \(\chi_{2856}(1283,\cdot)\) \(\chi_{2856}(1691,\cdot)\) \(\chi_{2856}(1787,\cdot)\) \(\chi_{2856}(2123,\cdot)\) \(\chi_{2856}(2195,\cdot)\) \(\chi_{2856}(2531,\cdot)\) \(\chi_{2856}(2627,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{24})\)
Fixed field: Number field defined by a degree 24 polynomial

Values on generators

\((2143,1429,953,409,2689)\) → \((-1,-1,-1,e\left(\frac{2}{3}\right),e\left(\frac{3}{8}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(11\)\(13\)\(19\)\(23\)\(25\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 2856 }(2531, a) \) \(1\)\(1\)\(e\left(\frac{5}{24}\right)\)\(e\left(\frac{19}{24}\right)\)\(1\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{23}{24}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{7}{8}\right)\)\(e\left(\frac{13}{24}\right)\)\(e\left(\frac{5}{24}\right)\)\(e\left(\frac{5}{8}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2856 }(2531,a) \;\) at \(\;a = \) e.g. 2