sage: H = DirichletGroup(2856)
pari: g = idealstar(,2856,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 768 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{48}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{2856}(2143,\cdot)$, $\chi_{2856}(1429,\cdot)$, $\chi_{2856}(953,\cdot)$, $\chi_{2856}(409,\cdot)$, $\chi_{2856}(2689,\cdot)$ |
First 32 of 768 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(5\) | \(11\) | \(13\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(37\) | \(41\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{2856}(1,\cdot)\) | 2856.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{2856}(5,\cdot)\) | 2856.fr | 48 | yes | \(-1\) | \(1\) | \(e\left(\frac{35}{48}\right)\) | \(e\left(\frac{25}{48}\right)\) | \(i\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{41}{48}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{31}{48}\right)\) | \(e\left(\frac{23}{48}\right)\) | \(e\left(\frac{7}{16}\right)\) |
\(\chi_{2856}(11,\cdot)\) | 2856.gd | 48 | yes | \(-1\) | \(1\) | \(e\left(\frac{25}{48}\right)\) | \(e\left(\frac{11}{48}\right)\) | \(i\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{43}{48}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{5}{48}\right)\) | \(e\left(\frac{13}{48}\right)\) | \(e\left(\frac{5}{16}\right)\) |
\(\chi_{2856}(13,\cdot)\) | 2856.br | 4 | no | \(-1\) | \(1\) | \(i\) | \(i\) | \(1\) | \(-1\) | \(-i\) | \(-1\) | \(-i\) | \(-i\) | \(-i\) | \(i\) |
\(\chi_{2856}(19,\cdot)\) | 2856.fc | 24 | no | \(1\) | \(1\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(-1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{1}{8}\right)\) |
\(\chi_{2856}(23,\cdot)\) | 2856.fq | 48 | no | \(-1\) | \(1\) | \(e\left(\frac{41}{48}\right)\) | \(e\left(\frac{43}{48}\right)\) | \(-i\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{35}{48}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{13}{48}\right)\) | \(e\left(\frac{29}{48}\right)\) | \(e\left(\frac{13}{16}\right)\) |
\(\chi_{2856}(25,\cdot)\) | 2856.fd | 24 | no | \(1\) | \(1\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(-1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{7}{8}\right)\) |
\(\chi_{2856}(29,\cdot)\) | 2856.es | 16 | no | \(1\) | \(1\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(-i\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{7}{16}\right)\) |
\(\chi_{2856}(31,\cdot)\) | 2856.fo | 48 | no | \(-1\) | \(1\) | \(e\left(\frac{31}{48}\right)\) | \(e\left(\frac{5}{48}\right)\) | \(-i\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{13}{48}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{35}{48}\right)\) | \(e\left(\frac{43}{48}\right)\) | \(e\left(\frac{11}{16}\right)\) |
\(\chi_{2856}(37,\cdot)\) | 2856.fp | 48 | no | \(-1\) | \(1\) | \(e\left(\frac{23}{48}\right)\) | \(e\left(\frac{13}{48}\right)\) | \(-i\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{29}{48}\right)\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{43}{48}\right)\) | \(e\left(\frac{11}{48}\right)\) | \(e\left(\frac{11}{16}\right)\) |
\(\chi_{2856}(41,\cdot)\) | 2856.ej | 16 | no | \(-1\) | \(1\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(i\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{9}{16}\right)\) |
\(\chi_{2856}(43,\cdot)\) | 2856.dq | 8 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(1\) | \(-i\) | \(e\left(\frac{3}{8}\right)\) | \(i\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{3}{8}\right)\) |
\(\chi_{2856}(47,\cdot)\) | 2856.dz | 12 | no | \(-1\) | \(1\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(-i\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(-i\) |
\(\chi_{2856}(53,\cdot)\) | 2856.fg | 24 | yes | \(-1\) | \(1\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{19}{24}\right)\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{1}{8}\right)\) |
\(\chi_{2856}(55,\cdot)\) | 2856.bk | 4 | no | \(1\) | \(1\) | \(i\) | \(-i\) | \(-1\) | \(-1\) | \(-i\) | \(-1\) | \(-i\) | \(-i\) | \(-i\) | \(-i\) |
\(\chi_{2856}(59,\cdot)\) | 2856.ez | 24 | yes | \(-1\) | \(1\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(-1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{7}{8}\right)\) |
\(\chi_{2856}(61,\cdot)\) | 2856.fv | 48 | no | \(1\) | \(1\) | \(e\left(\frac{29}{48}\right)\) | \(e\left(\frac{7}{48}\right)\) | \(-i\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{23}{48}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{25}{48}\right)\) | \(e\left(\frac{17}{48}\right)\) | \(e\left(\frac{9}{16}\right)\) |
\(\chi_{2856}(65,\cdot)\) | 2856.fw | 48 | no | \(1\) | \(1\) | \(e\left(\frac{47}{48}\right)\) | \(e\left(\frac{37}{48}\right)\) | \(i\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{29}{48}\right)\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{19}{48}\right)\) | \(e\left(\frac{11}{48}\right)\) | \(e\left(\frac{11}{16}\right)\) |
\(\chi_{2856}(67,\cdot)\) | 2856.ce | 6 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) |
\(\chi_{2856}(71,\cdot)\) | 2856.ev | 16 | no | \(-1\) | \(1\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(i\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{3}{16}\right)\) |
\(\chi_{2856}(73,\cdot)\) | 2856.fy | 48 | no | \(1\) | \(1\) | \(e\left(\frac{19}{48}\right)\) | \(e\left(\frac{41}{48}\right)\) | \(-i\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{1}{48}\right)\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{47}{48}\right)\) | \(e\left(\frac{31}{48}\right)\) | \(e\left(\frac{15}{16}\right)\) |
\(\chi_{2856}(79,\cdot)\) | 2856.fu | 48 | no | \(1\) | \(1\) | \(e\left(\frac{41}{48}\right)\) | \(e\left(\frac{43}{48}\right)\) | \(-i\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{35}{48}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{37}{48}\right)\) | \(e\left(\frac{5}{48}\right)\) | \(e\left(\frac{13}{16}\right)\) |
\(\chi_{2856}(83,\cdot)\) | 2856.dg | 8 | yes | \(-1\) | \(1\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(-1\) | \(-i\) | \(e\left(\frac{5}{8}\right)\) | \(-i\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{1}{8}\right)\) |
\(\chi_{2856}(89,\cdot)\) | 2856.ds | 12 | no | \(1\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(i\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(i\) |
\(\chi_{2856}(95,\cdot)\) | 2856.fq | 48 | no | \(-1\) | \(1\) | \(e\left(\frac{37}{48}\right)\) | \(e\left(\frac{47}{48}\right)\) | \(-i\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{7}{48}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{41}{48}\right)\) | \(e\left(\frac{25}{48}\right)\) | \(e\left(\frac{9}{16}\right)\) |
\(\chi_{2856}(97,\cdot)\) | 2856.en | 16 | no | \(1\) | \(1\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(-i\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{7}{16}\right)\) |
\(\chi_{2856}(101,\cdot)\) | 2856.ci | 6 | yes | \(1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) |
\(\chi_{2856}(103,\cdot)\) | 2856.cu | 6 | no | \(1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) |
\(\chi_{2856}(107,\cdot)\) | 2856.gd | 48 | yes | \(-1\) | \(1\) | \(e\left(\frac{11}{48}\right)\) | \(e\left(\frac{1}{48}\right)\) | \(-i\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{17}{48}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{31}{48}\right)\) | \(e\left(\frac{23}{48}\right)\) | \(e\left(\frac{15}{16}\right)\) |
\(\chi_{2856}(109,\cdot)\) | 2856.fp | 48 | no | \(-1\) | \(1\) | \(e\left(\frac{13}{48}\right)\) | \(e\left(\frac{47}{48}\right)\) | \(i\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{31}{48}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{41}{48}\right)\) | \(e\left(\frac{25}{48}\right)\) | \(e\left(\frac{9}{16}\right)\) |
\(\chi_{2856}(113,\cdot)\) | 2856.ep | 16 | no | \(1\) | \(1\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(-i\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{5}{16}\right)\) |
\(\chi_{2856}(115,\cdot)\) | 2856.ea | 12 | no | \(1\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-i\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(i\) |