sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2808, base_ring=CyclotomicField(36))
M = H._module
chi = DirichletCharacter(H, M([0,18,28,21]))
pari:[g,chi] = znchar(Mod(2533,2808))
| Modulus: | \(2808\) | |
| Conductor: | \(2808\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(36\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2808}(301,\cdot)\)
\(\chi_{2808}(565,\cdot)\)
\(\chi_{2808}(661,\cdot)\)
\(\chi_{2808}(709,\cdot)\)
\(\chi_{2808}(1237,\cdot)\)
\(\chi_{2808}(1501,\cdot)\)
\(\chi_{2808}(1597,\cdot)\)
\(\chi_{2808}(1645,\cdot)\)
\(\chi_{2808}(2173,\cdot)\)
\(\chi_{2808}(2437,\cdot)\)
\(\chi_{2808}(2533,\cdot)\)
\(\chi_{2808}(2581,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((703,1405,2081,1081)\) → \((1,-1,e\left(\frac{7}{9}\right),e\left(\frac{7}{12}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
| \( \chi_{ 2808 }(2533, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(-i\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(-1\) |
sage:chi.jacobi_sum(n)