sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2808, base_ring=CyclotomicField(36))
M = H._module
chi = DirichletCharacter(H, M([0,18,34,27]))
pari:[g,chi] = znchar(Mod(1877,2808))
| Modulus: | \(2808\) | |
| Conductor: | \(2808\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(36\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2808}(5,\cdot)\)
\(\chi_{2808}(317,\cdot)\)
\(\chi_{2808}(437,\cdot)\)
\(\chi_{2808}(749,\cdot)\)
\(\chi_{2808}(941,\cdot)\)
\(\chi_{2808}(1253,\cdot)\)
\(\chi_{2808}(1373,\cdot)\)
\(\chi_{2808}(1685,\cdot)\)
\(\chi_{2808}(1877,\cdot)\)
\(\chi_{2808}(2189,\cdot)\)
\(\chi_{2808}(2309,\cdot)\)
\(\chi_{2808}(2621,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((703,1405,2081,1081)\) → \((1,-1,e\left(\frac{17}{18}\right),-i)\)
| \(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
| \( \chi_{ 2808 }(1877, a) \) |
\(1\) | \(1\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{1}{3}\right)\) |
sage:chi.jacobi_sum(n)