Properties

Label 2795.2794
Modulus $2795$
Conductor $2795$
Order $2$
Real yes
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2795, base_ring=CyclotomicField(2)) M = H._module chi = DirichletCharacter(H, M([1,1,1]))
 
Copy content pari:[g,chi] = znchar(Mod(2794,2795))
 

Kronecker symbol representation

Copy content sage:kronecker_character(-2795)
 
Copy content pari:znchartokronecker(g,chi)
 

\(\displaystyle\left(\frac{-2795}{\bullet}\right)\)

Basic properties

Modulus: \(2795\)
Conductor: \(2795\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(2\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: yes
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2795.d

\(\chi_{2795}(2794,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q\)
Fixed field: \(\Q(\sqrt{-2795}) \)

Values on generators

\((2237,431,261)\) → \((-1,-1,-1)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(7\)\(8\)\(9\)\(11\)\(12\)\(14\)
\( \chi_{ 2795 }(2794, a) \) \(-1\)\(1\)\(-1\)\(1\)\(1\)\(-1\)\(-1\)\(-1\)\(1\)\(-1\)\(1\)\(1\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2795 }(2794,a) \;\) at \(\;a = \) e.g. 2