sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2784, base_ring=CyclotomicField(56))
M = H._module
chi = DirichletCharacter(H, M([28,35,28,8]))
pari:[g,chi] = znchar(Mod(683,2784))
| Modulus: | \(2784\) | |
| Conductor: | \(2784\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(56\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2784}(83,\cdot)\)
\(\chi_{2784}(107,\cdot)\)
\(\chi_{2784}(227,\cdot)\)
\(\chi_{2784}(371,\cdot)\)
\(\chi_{2784}(587,\cdot)\)
\(\chi_{2784}(683,\cdot)\)
\(\chi_{2784}(779,\cdot)\)
\(\chi_{2784}(803,\cdot)\)
\(\chi_{2784}(923,\cdot)\)
\(\chi_{2784}(1067,\cdot)\)
\(\chi_{2784}(1283,\cdot)\)
\(\chi_{2784}(1379,\cdot)\)
\(\chi_{2784}(1475,\cdot)\)
\(\chi_{2784}(1499,\cdot)\)
\(\chi_{2784}(1619,\cdot)\)
\(\chi_{2784}(1763,\cdot)\)
\(\chi_{2784}(1979,\cdot)\)
\(\chi_{2784}(2075,\cdot)\)
\(\chi_{2784}(2171,\cdot)\)
\(\chi_{2784}(2195,\cdot)\)
\(\chi_{2784}(2315,\cdot)\)
\(\chi_{2784}(2459,\cdot)\)
\(\chi_{2784}(2675,\cdot)\)
\(\chi_{2784}(2771,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1567,2437,929,1249)\) → \((-1,e\left(\frac{5}{8}\right),-1,e\left(\frac{1}{7}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(31\) | \(35\) |
| \( \chi_{ 2784 }(683, a) \) |
\(1\) | \(1\) | \(e\left(\frac{15}{56}\right)\) | \(e\left(\frac{13}{28}\right)\) | \(e\left(\frac{39}{56}\right)\) | \(e\left(\frac{53}{56}\right)\) | \(1\) | \(e\left(\frac{9}{56}\right)\) | \(e\left(\frac{17}{28}\right)\) | \(e\left(\frac{15}{28}\right)\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{41}{56}\right)\) |
sage:chi.jacobi_sum(n)